Drilling Handbook ISCAR's Reference Guide

Quality Standard

ISCAR has been certified by the prestigious Standards Institution, as being in full compliance to ensure delivery of the finest quality goods. Quality control facilities include the metallurgical laboratory, raw metal testing, an online testing procedure and a machining center for tool performance testing and final product inspection. Only the finest products are packaged for entry into ISCAR's inventory.

Dear Machinist, Customer and Colleague,

As a manufacturer of cutting tools, our main objective is to ensure optimal production with the most advanced and high-performance tools that meet the requirements of modern technology. Machining the holes faster and more accurately reduces processing time and cost, and lowers the possibility of defective parts. Although the cutting tool is often considered to be of minor value, it is key to increasing productivity and quality. At **ISCAR**, we understand this fact well, and our ongoing research and design activities are aimed at creating cutting tools that will improve overall performance and make the machining process more effective. Intensive research and development have resulted in innovative and effective solutions for our customers' diverse range of requirements. As the variety of **ISCAR** tools is vast, it can be a challenge to make the right tooling decision for specific manufacturing needs. We hope that this guide will help you with the right tool selection and that it will be a useful supplement to the other ISCAR catalogs and leaflets. This handbook is divided into eight main chapters, considering specific features of holemaking and highlighting the latest holemaking solutions.

The first chapter introduces general formulations such as the definition of types of holes and their designations, drill terminology, drill classifications, hole accuracy and surface roughness by drilling, tool holders, the optimal ways to machine holes, the role of coolant in drilling, as well as general information about **ISCAR**'s holemaking lines, a comparison of exchangeable head drills vs solid drills, and highlights for a quick and easy way to select the correct solution. The second, third, fourth, fifth, and sixth chapters introduce which ISCAR products can be used for machining hole types according to the intended purpose, along with recommendations for cutting conditions, the correct use of the tool, as well as troubleshooting. The seventh chapter introduces general formulas and definitions for drilling. The eighth chapter introduces various types of ISCAR grades and their recommended range of use, as well as the material groups based on the VDI 3323 standard.

We hope that this handbook will be a useful tool and a helpful guide for holemaking.

Contents

General Drilling Handbook	5
Types of Holes and Their Definition	6
Drill Terminology	9
Drill Classifications	
Hole Accuracy and Surface Roughness by Drilling	
Tool Holders	
Technological Drilling Method	
Coolant in Drilling	
ISCAR Drilling Products	
Exchangeable Head Drills vs Solid Drills	
General Purpose Drilling	45
ISCAR Product Family for General Purpose Drilling	47
ISCAR Drill Lines Range for General Purpose Drilling	
Exchangeable Head Drills	
QUICK-3-CHAM	
SUMO-CHAM	
SUMO-L-DRILL	
SUMO-GUN	
SPADE-CHAM	
CHAM-DRILL	
Exchangeable Head Drills Cutting Conditions and Machine Power	
Exchangeable Head Drills Troubleshooting	
Indexable Insert Drills DR-TWIST	
MULTI-FUNCTION TOOLS	
Indexable Insert Drills Cutting Conditions	
Exchangeable Head Drills Troubleshooting	
Combo Drills Exchangeable Heads and Indexable Insert Drills	
COMBI-CHAM	
Combo Drills Exchangeable Heads and Indexable Insert Drills Cutting Conditions	
Modular Exchangeable Drilling Heads	130
MODU-DRILL	
Solid Carbide Drills	138
SOLID-DRILL	139
SOLID-DRILL Cutting Conditions	
SOLID-DRILL Troubleshooting	

ISCAR

Pre-Thread Drilling with Chamfering	153
Pre-Thread Drilling and Chamfering of Stepped Holes	154
Combined Drills	155
ISCAR Product Family for Pre-Thread Drilling	
Pre-Thread Assembled Combined Drills	157
Chamfering Ring	165
Chamfering Holder	169
SOLID-DRILL Solid Carbide Combined Drills	
SOLID-DRILL Regrinding Instructions	178
SOLID-DRILL Cutting Conditions	
SOLID-DRILL Machining Conditions	180
Spot Drilling and Chamfering	185
Spot Drilling	
Spot Drill	
Spot Drilling Vs Pre-Drilling	

The ISCAR Product Family for Spot Drilling	120
MULTI-MASTER Solution for Spot Drilling	190
MM ECD	
/M HCD	195
Solid Carbide Drill Solution for Spot Drilling	

Center Drilling

I

Center Drilling	199
Center Drills	201
Center Drills: Carbide vs HSS	202
ISCAR Product Family for Center Drilling	203
MULTI-MASTER Solution for Center Drilling	204
MULTI-MASTER Cutting Conditions for Center Drilling	208

Deep Hole Drilling	209
Accuracy and Surface Quality	211
Deep Hole Drilling Features	213
Deep Hole Methods	215
Practical Tips	216
ELB System Gundrills	218
Method of ELB System Gun Drilling	219
Gundrill Structure	221
ISCAR-GUNDRILLS Products	230
BTA System STS	231
Method of BTA System STS	232
BTA Drill Structure	
ISCAR BTA Drill Products	235

Ejector System DTS	236
Method of Ejector System DTS	237
DTS Drill Structure	238
ISCAR DTS Drill Products	
Guide Pads	241
Calculation of Tube Length for BTA and DTS Methods	243
ISCAR Deep Drilling Products	244
ISCAR-GUNDRILLS Solid Carbide Gundrills	
ISCAR-GUNDRILLS Brazed Tip Gundrills	
ISCAR-GUNDRILLS Cutting Conditions for Gun Drilling Methods	
ISCAR-GUNDRILLS Inquiry Form for Gundrills	
TRI-DEEP Indexable Inserts	
TRI-DEEP Solution for Gun Drilling Methods	
TRI-DEEP Drill Diameter Adjustment Shims for Gundrills	
TRI-DEEP Cutting Conditions for Gun Drilling Methods	
TRI-DEEP Machine Requirements for Gun Drilling Methods	
TRI-DEEP Inquiry Form for Gundrills	270
TRI-DEEP Solution for BTA and DTS Drilling Methods	272
TRI-DEEP Cutting Conditions for BTA and DTS Drilling Methods	274
TRI-DEEP Machine Requirements for BTA and DTS Drilling Methods	276
FINE-BEAM Indexable Inserts	278
FINE-BEAM Solution for BTA and DTS Drilling Methods	
FINE-BEAM Cutting Conditions for BTA and DTS Drilling Methods	
FINE-BEAM Machine Requirements for BTA and DTS Drilling Methods	
ISCAR-DEEP-DRILL Indexable Inserts	
ISCAR-DEEP-DRILL Solution for BTA and DTS Drilling Methods with Indexable Inserts	
ISCAR-DEEP-DRILL Solution for BTA and DTS Drilling Methods with Brazed Tips	
ISCAR-DEEP-DRILL Cutting Conditions for BTA and DTS Drilling Methods	
ISCAR-DEEP-DRILL Machine Requirements for BTA and DTS Drilling Methods	301
Troubleshooting	303
Special Request Form Deep Drilling	305
Formulas and Definitions	307
General Formulas and Definitions for Drilling Operations	308
Specific Energy Consumption (SEC)	
Cutting Material Grades and Engineering Materials	315
Tool Material Grades	
Material Groups	320

General Drilling Handbook

Types of Holes and Their Definition

Holes are fundamental in various engineering and manufacturing processes, playing a critical role in the functionality and assembly of countless devices and structures. Whether in metalworking, construction, electronics, or even everyday items, holes are essential for connecting components, allowing for movement, or securing parts in place. Each hole is often tailored to its specific function, whether it's designed for the insertion of fasteners like bolts and screws, creating passageways for fluids or gases, or reducing weight without compromising strength. The precision in drilling or forming these holes is crucial, as the exact dimensions, alignment, and finish can directly impact the performance and reliability of the final product.

Hole Types

(Figure 1.1.1)

- Cylindrical (simple) hole the most basic and widely used type of hole.
 Typically used in the general industry.
- Tapered hole a hole where the surface around the central axis of the hole is at an angle. Used for centering parts, ensuring alignment, and in applications where a tight fit is necessary, such as mounting tapered pins.
- Stepped hole a hole that has two (or more) diameters along its depth, creating a step at the transition point where the diameter changes.

Stepped holes can also include combinations of different types of holes. The most common subtypes of stepped holes are:

- Countersink holes the top of the hole is conical, allowing fasteners like countersunk screws or rivets to sit flush with the surface. They are also used to remove burrs from drilling, improving finish and safety. Common angles for countersinks are 120° or 90°.
- Counterbored holes the top of the hole is enlarged with a flat-bottomed area, allowing fasteners like socket head cap screws to sit flush or below the level of a workpiece's surface. A spot face is usually a very shallow counterbore, often used to ensure a flat surface for the fastener.

Figure 1.1.1

•

End Condition

(Figure 1.1.2)

- Through hole (also called a thru-hole or clearance hole) - this type of hole extends completely through the entire thickness of the workpiece.
- Blind hole this type of hole has a specific depth and does not extend completely through the workpiece.

Figure 1.1.2

Passability of Hole

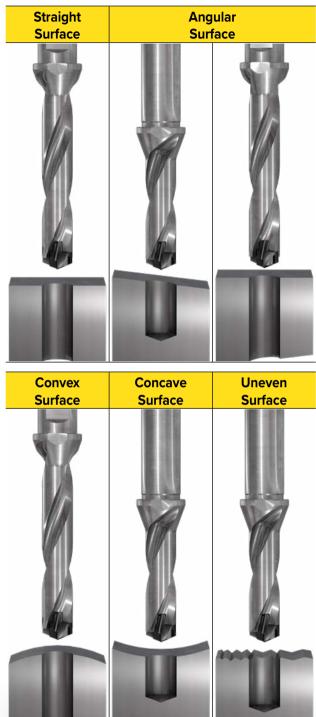
(Figure 1.1.3)

- Interrupted hole is characterized by one or more interruptions or recesses along the surface surrounding the central axis of the hole. These interruptions could be the result of intersecting features, such as grooves, slots, or cross-holes.
- Solid/ Whole hole has a continuous, uninterrupted surface around the central axis of the hole.

Figure 1.1.3

7

Hole Location

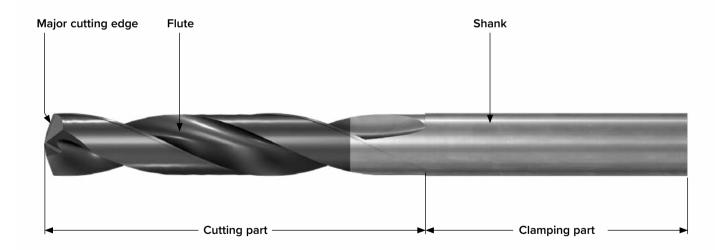

(Figure 1.1.4)

Straight surface - the surface on which the hole is located is flat and perpendicular to the central axis of the hole. This is the most common type of hole location.

Angular surface - the surface on which the hole is located is at an angle relative to the central axis of the hole. Drilling into an angular surface requires careful consideration to ensure the hole is positioned correctly and functions as intended.

- Convex surface the surface on which the hole is located curves outward, creating a dome-like shape. Drilling into a convex surface can be challenging due to the curved nature of the surface, which can affect the drill's entry point and angle.
- Concave surface the surface on which the hole is located curves inward, forming a bowl-like shape. Similar to convex surfaces, drilling into a concave surface requires special attention to ensure accurate positioning and alignment.
- Uneven surface the surface on which the hole is located is irregular or undulating relative to the central axis of the hole. Drilling into an uneven surface is complex and may require advanced techniques or equipment to achieve the desired hole characteristics.

Figure 1.1.4



Drill Terminology

Drilling is one of the most common methods for machining holes in various materials. The process involves using a rotating cutting tool, known as a drill, to remove material and produce a hole. Drilling can create various types of holes with different end conditions and degrees of passability on different surface locations. In addition to drilling, some drills can sometimes be used for enlarging the diameter of existing holes in certain cases.

The design of a drill is critical for ensuring the accuracy and efficiency of drilling operations. A drill is primarily composed of two main sections: the cutting part (also known as the body) and the clamping part. The design of a drill consists of three main elements (Figure 1.2.1):

- Major cutting edges intended for cutting the material by removing chips.
- Flutes designed to channel away chips from the cutting area.
- Shank intended to clamp the drill in the tool holder.

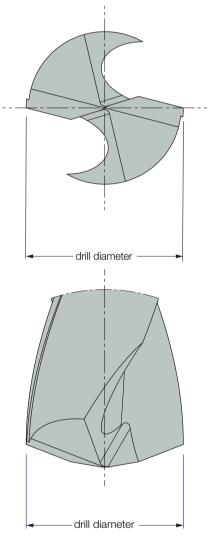
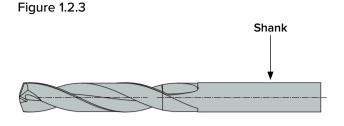
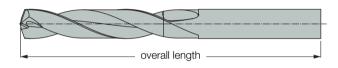


Figure 1.2.1


The Main Parameters of the Drill That Defines Its Functionality Are:

Drill Diameter – The largest diameter of cutting zone, measured between intersection points of cutting edges and drill body. The drill diameter determines the diameter of the hole (Figure 1.2.2).



Shank Size – The type and size of the drill shank depends on the chuck in which the drill will be clamped. Various shank and chuck combinations can provide improved performance such as higher torque and more centering accuracy. (Figure 1.2.3).

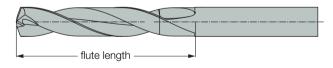
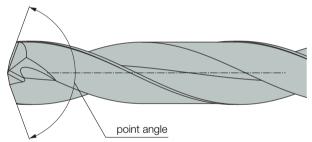
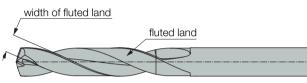

Overall Length – The total length of the drill which includes the length of the cutting zone and the length of the clamping zone, i.e. distance between two extreme planes of the tools which are perpendicular to the central axis of the drill (Figure 1.2.4).

Figure 1.2.4


Flute Length – The effective length of the drill which determines the maximum depth of the machined hole. The flute length defined as the distance between two perpendicular planes to the central axis of the drill that are placed on the chisel point and the end of the flute (Figure 1.2.5).

Point Angle – The angle between cutting edges. The point angle of a drill affects the cutting performance and the tool's thermal conductivity. A sharper point angle will result in a longer cutting edge, thus allowing better thermal conductivity and consequently longer tool life but on the other hand, it weakens the tool rigidity. Therefore, the point angle of a drill depends on the workpiece material it aims to machine. Commonly, for soft material the angle lays between 80 -90 degrees, for steels and cast iron this angle will be between 116 - 118 degrees, for hard steels this angle will be between 130 - 140 degrees (Figure 1.2.6).



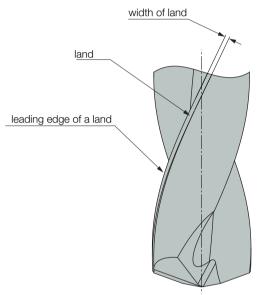
Additional Drill Parameters According to ISO 5419: 1982 Standard

Fluted Land - The helical portion of the body, including both the land and the body clearance (Figure 1.2.7).


Width of Fluted Land - The distance between the leading edge of the land and the heel, measured at right angles to the leading edge of the land (Figure 1.2.7).

Web - The central portion of the drill situated between the roots of the flutes over the flute length (Figure 1.2.8). Note 1 to entry: The point end of the web forms the chisel edge (Figure 1.2.14).

Web Thickness - The minimum dimension of the web measured in a plane normal to the axis. The web thickness is usually measured at the point end (Figure 1.2.8).


web

Land - The cylindrical or conical leading surface of the drill (Figure 1.2.9).

Width of Land - The dimension measured at right angles to the leading edge of the land across a land (Figure 1.2.9)

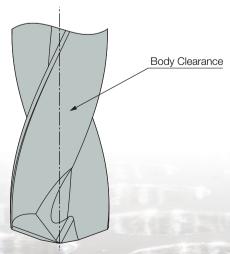
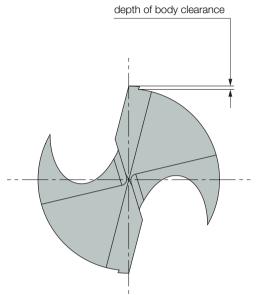
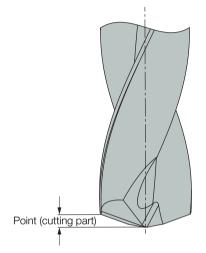

Leading Edge of a Land (minor cutting edge) - The edge formed by the intersection of a land and a flute (Figure 1.2.9).

Figure 1.2.9


Body Clearance - The portion of a fluted land reduced in diameter to provide diametral clearance (Figure 1.2.10).

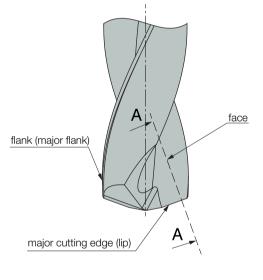
Depth of Body Clearance - The radial distance between the land and the corresponding body clearance. It is generally measured at the outer corners (Figure 1.2.11).

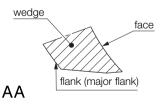

Heel - The edge formed by the intersection of a flute and the body clearance (Figure 1.2.12).

Point (cutting part) - The functional part of the drill comprised of chipproducing elements. The major cutting edges, chisel edge, faces and flanks are therefore elements of the point (cutting part) (Figure 1.2.13).

Figure 1.2.12

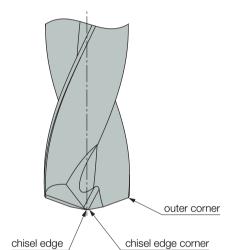
Flank (major flank) - The surface on the drill point bounded by the major cutting edge, the fluted land, the following flute, and the chisel edge (Figure 1.2.13).

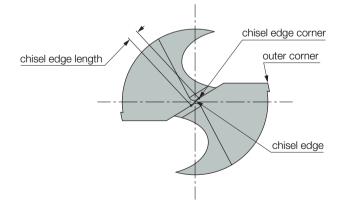

Face - The portion of the surface of a flute adjacent to the major cutting edge and on which the chip when formed during the cutting operation. (Figure 1.2.13).


Major Cutting Edge (lip) -

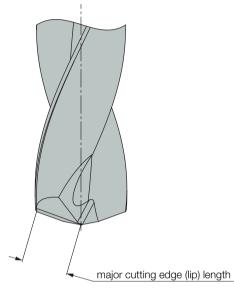
The edge formed by the Intersection of a flank and face (Figure 1.2.13).

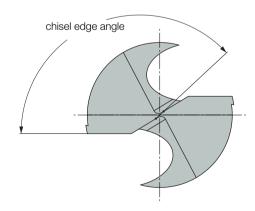
Wedge - The portion of the point enclosed between a face and a flank associated with the major cutting edge (Figure 1.2.13).



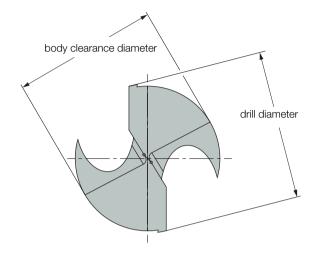


Outer Corner - The corner formed by the Intersection of a major cutting edge and the leading edge of the land (Figure 1.2.14). Chisel Edge - The edge formed by the intersection of the flanks (Figure 1.2.14). Chisel Edge Corner - The corner formed by the Intersection of a major cutting edge and the chisel edge (Figure 1.2.14). Chisel Edge Length - The distance between the chisel edge corners (Figure 1.2.14).


Figure 1.2.14


Major Cutting Edge (lip) Length - The minimum distance between the outer corner and the corresponding chisel edge corner of the major cutting edge (Figure 1.2.15).

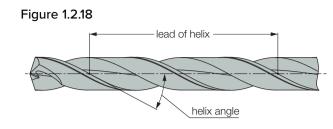
Chisel Edge Angle - The obtuse angle between the chisel edge and a line from the outer corner to the corresponding chisel edge corner. The angle is measured by projection in a plane perpendicular to the drill axis (Figure 1.2.16).


Figure 1.2.16

Body Clearance Diameter - The

diameter of the body clearance behind the lands (Figure 1.2.17).

Figure 1.2.17

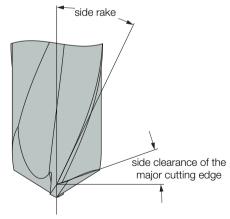


Back Taper - The reduction in diameter from the outer corners towards the shank. It is expressed by the ratio of the reduction in diameter and the length of measurement.

Web Taper - The increase in web thickness from the point of the drill to the shank end of the flutes. It is expressed by the ratio of the increase in thickness and the length of measurement.

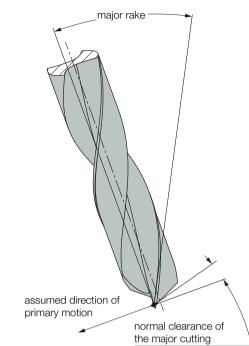
Lead of Helix - The distance measured parallel to the drill axis between corresponding points on the leading edge of a land in one complete revolution of the land (Figure 1.2.18).

Helix Angle - The acute angle between the tangent to the helical leading edge and a plane containing the axis and the point in question. This angle lies in a plane normal to the radius at the point on the edge (Figure 1.2.18). Note 1 to entry: Helix angles may be classified as normal, slow and quick.



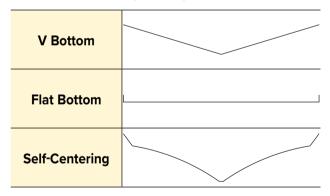
Side Rake - The angle between a face and a plane passing through the selected point on the cutting edge and the drill axis, measured in the plane perpendicular to the radius at the selected point (Figure 1.2.19).

Note 1 to entry: When the selected point is at the outer corner, this angle is equivalent to the helix angle (Figure 1.2.18).


Side Clearance of The Major Cutting Edge - The angle between a flank and a plane containing the cutting edge and the assumed direction of primary motion at the selected point on the cutting edge, measured in the plane perpendicular to the radius at the selected point (Figure 1.2.19). This angle is usually specified and measured at the outer corner.

Normal Rake - The angle between a face and a plane passing through the selected point on the cutting edge and the drill axis, measured in the plane perpendicular to the cutting edge (Figure 1.2.20).

Normal Clearance of the Major Cutting Edge - The angle between a flank and a plane containing the cutting edge and the assumed direction of primary motion at the selected point on the cutting edge measured in the plane perpendicular to the cutting edge at the selected point (Figure 1.2.19). Figure 1.2.20


Drill Classifications

Drills can be classified based on the following criteria:

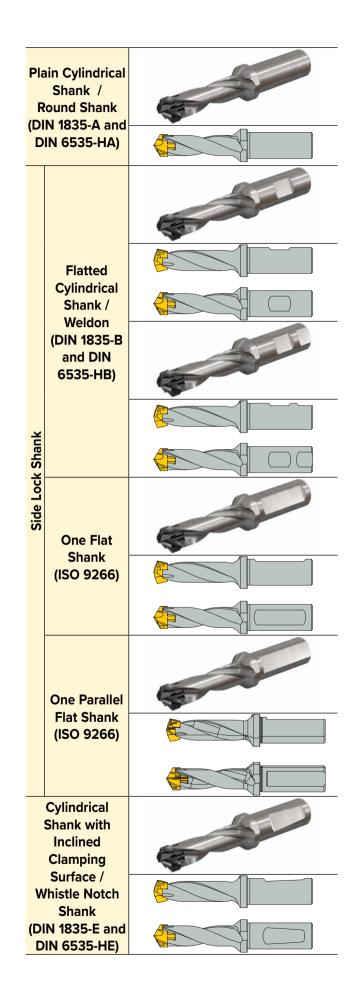
Cutting Part

The cutting part of a drill consists of two main components: the major cutting edge and the flute. Major Cutting Edge:

- V Bottom Most common type, used for general applications.
- Flat Bottom Typically used for specific applications such as creating pilot holes, drilling shoulders, or for screw heads, or for spring, etc. It's also employed when the surface of the drill exit is not perpendicular to the central axis of the drill.
- Self-Centering Ideal for situations requiring drilling with an overhang or creating a self-lead for deep drilling in standard turning/milling centers.

Flute Type:

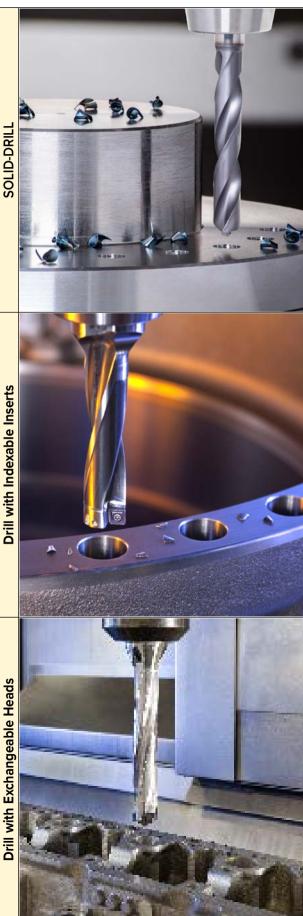
- **Spiral Flute** Typically used for vertical drilling and provides effective chip evacuation. This is the most common flute type.
- Straight Flute Suited for horizontal drilling, such as in lathes or turning centers, and for deep drilling. It is also used for step drills.


Straight Flute

Clamping Part

Intended for clamping the drill into the tool holder. The type and size of a drill shank depends on the chuck in which the drill will be clamped. Various shank and chuck combinations can enhance performance, such as increasing torque and improving centering accuracy. The most common types of shanks are the round shank, side lock shank, and whistle notch shank.

- Plain Cylindrical Shank / Round Shank -Compatible with hydraulic and collet chucks, it reduces the runout of the cutting edge, which is crucial for drill lengths over 5xD.
- Side Lock Shank Features a cylindrical shank with one or two parallel flats for side clamping systems. This design provides a secure and rigid clamp in the tool holder, preventing the drill from being pulled outward. It offers high torque transmission, making it suitable for heavy machining operations.
- Cylindrical Shank with Inclined Clamping Surface / Whistle Notch Shank – An analog of side lock shanks with the main difference of the notch angled at 2° relative to the central axis of the drill.



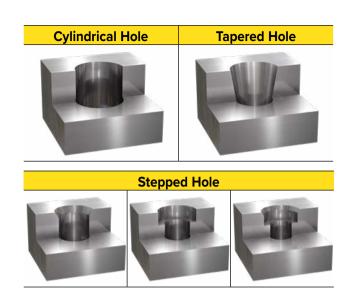
Design Configuration

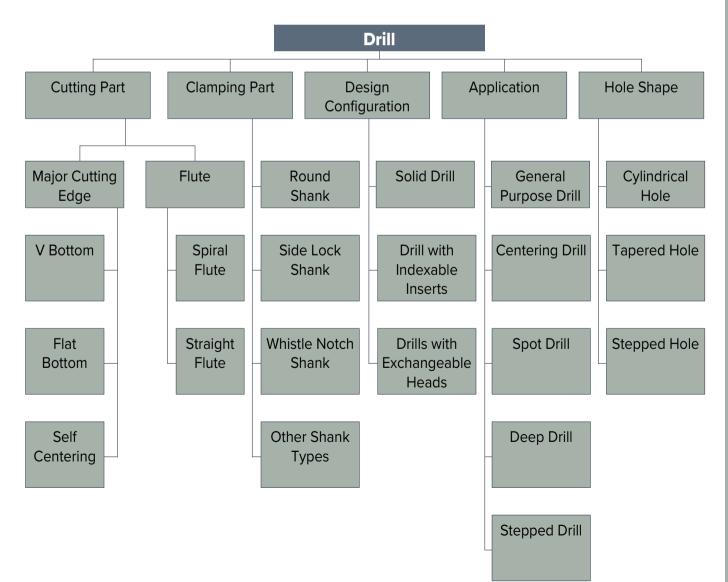
Drills may differ in their design configuration as follows:

- Solid Drill Primarily used for drilling • holes up to 12 mm (0.472 inches) in diameter and up to 12D in depth $(drill depth = 12 \times drill diameter).$
- Drill With Indexable Inserts Mainly used for drilling holes with a diameter of 12 mm and larger, this drill design is also successfully used for deep drilling.
- Drill With Exchangeable Heads -An alternative to drills with indexable inserts, used for precise drilling in finish operations.

ISCAR is currently the only company in the world that produces drills with exchangeable heads starting from a 4 mm diameter.

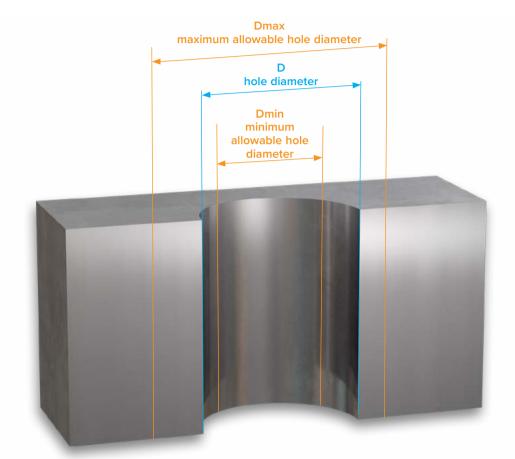
Application


Drills are categorized based on their intended application:


- General Purpose Drill Designed for thought and blind holes in various materials.
- **Centering Drill** Creates holes for holding parts between centers or with tailstocks in turning and grinding machines.
- **Spot Drill** Provides pre-location accuracy and a lead for stable drilling.
- Deep Drill Drilling holes on dedicated drilling machines with specialized drilling tools. Commonly used for drilling holes with a depth of 20D (hole depth = 20 x drill diameter) and more, but also can be used for drilling a shallower depth.
- Stepped Drill Drilling stepped holes by one drill.

Hole Shape

Drills can be classified by the shape of the holes they create such as cylindrical, tapered, or stepped.



Drill Classifications

Hole Accuracy and Surface Roughness by Drilling

Hole Accuracy

Hole accuracy is determined by the width of the tolerance field, that is, the permissible deviation from the nominal dimensions.

The nominal dimensions - the dimension that is a starting point for deviations and relative to which the limited dimensions are determined, that is, the dimensions that defined in the drawing.

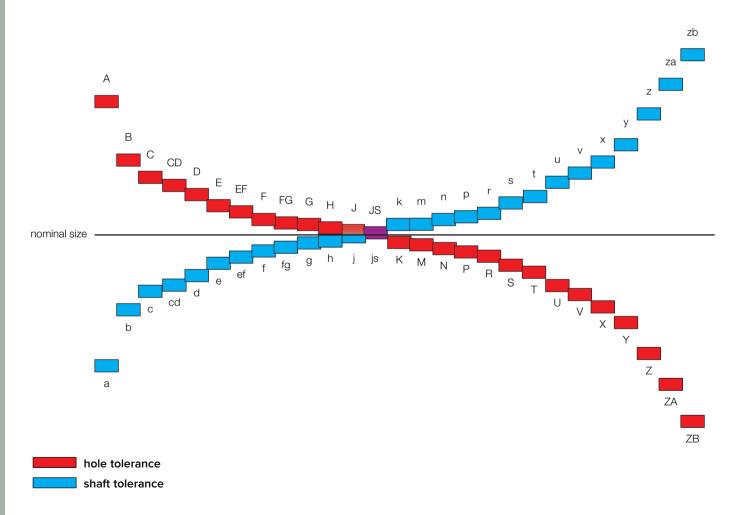
Width of the tolerance – the difference between the maximum allowable size and the minimum allowable size. Width of the tolerance is unsigned absolute value, for which it is generally accepted to use the IT Grade (International Tolerance Grade) according to the ISO 286 standard. The width of tolerance according IT Grade tables defined by number that placed after IT letters and depended on nominal dimensions, i.e., the same accuracy value according IT Grade table for different nominal dimensions will define a different range of tolerance. With an increase in the IT Grade number, the tolerance range increases, that is, the accuracy decreases. For example:

For size range between 6 mm and 10 mm according to IT10 grade the width of the tolerance will be 0.058 mm.

For size ranges between 6 mm and 10 mm according to IT12 grade, the width of the tolerance will be 0.15 mm.

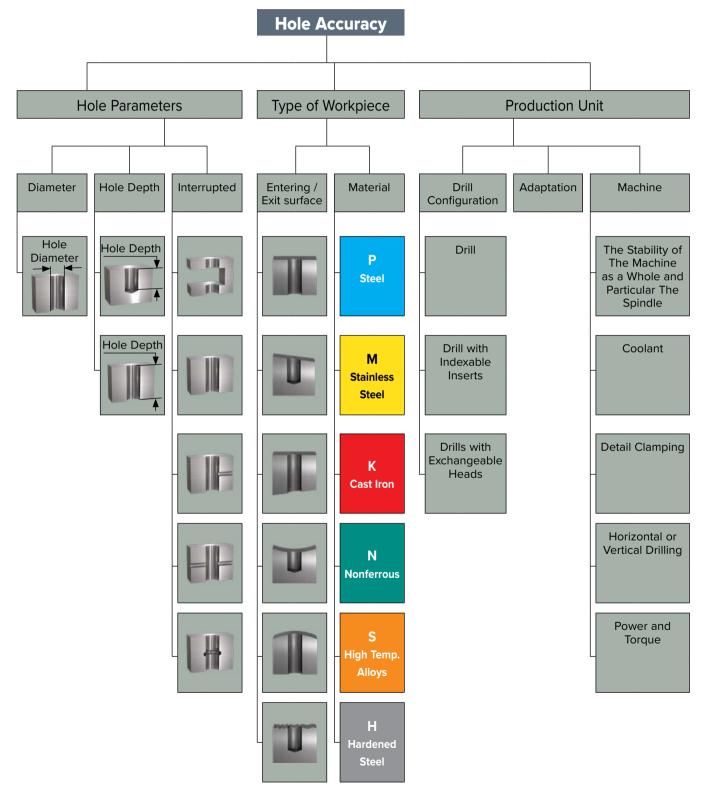
For size ranges between 10 mm and 18 mm according to IT10 grade, the width of the tolerance will be 0.07 mm. For size ranges between 10 mm and 18 mm according to IT12 grade, the width

according to IT12 grade, the width of the tolerance will be 0.18 mm.

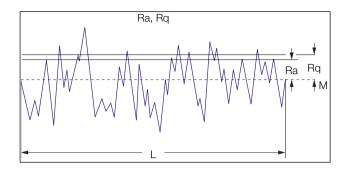

Basic	Size mm	Standard Tolerance Grades																	
	up to and	IT1	1T2	IT3	IT4	IT5	IT6	11	IT8	IT9	IT10	T11	T12	T13	IT14	IT15	IT16	IT17	IT18
Above	Including					Toler	ance	s μm					mm						
	3 ⁽³⁾	0.8	1.2	2	3	4	4	10	14	25	40	60	0.1	0.14	0.25	0.4	0.6	1	1.4
3	6	1	1.5	2.5	4	5	5	12	18	30	48	75	0.12	0.18	0.3	0.48	0.75	1.2	1.8
6	10	1	1.5	2.5	4	6	6	15	22	36	58	90	0.15	0.22	0.36	0.58	0.9	1.5	2.2
10	18	1.2	2	3	5	8	8	18	27	43	70	110	0.18	0.27	0.43	0.7	1.1	1.8	2.7
18	30	1.5	2.5	4	6	9	9	21	33	52	84	130	0.21	0.33	0.52	0.84	1.3	2.1	3.3
30	50	1.5	2.5	4	7	11	11	25	39	62	100	160	0.25	0.39	0.62	1	1.6	2.5	3.9
50	80	2	3	5	8	13	13	30	46	74	120	190	0.3	0.46	0.74	1.2	1.9	3	4.6
80	120	2.5	4	6	10	15	15	35	54	87	140	220	0.35	0.54	0.87	1.4	2.2	3.5	5.4
120	180	3.5	5	8	12	18	18	40	63	100	160	250	0.4	0.63	1	1.6	2.5	4	6.3
180	250	4.5	7	10	14	20	20	46	72	115	185	290	0.46	0.72	1.15	1.85	2.9	4.6	7.2
250	315	6	8	12	16	23	23	52	81	130	210	320	0.52	0.81	1.3	2.1	3.2	5.2	8.1
315	400	7	9	13	18	25	25	57	89	140	230	360	0.57	0.89	1.4	2.3	3.6	5.7	8.9
400	500	8	10	15	20	27	27	63	97	155	250	400	0.63	0.97	1.55	2.5	4	6.3	9.7
500	630 ⁽²⁾	9	11	16	22	32	32	70	110	175	280	440	0.7	1.1	1.75	2.8	4.4	7	11
630	800 ⁽²⁾	10	13	18	25	36	36	80	125	200	320	500	0.8	1.25	2	3.2	5	8	12.5
800	1000 ⁽²⁾	11	15	21	28	40	40	90	140	230	360	560	0.9	1.4	2.3	3.6	5.6	9	14
1000	1250 ⁽²⁾	13	18	24	33	47	47	105	165	260	420	660	1.05	1.65	2.6	4.2	6.6	10.5	16.5
1250	1600 ⁽²⁾	15	21	29	39	55	55	125	195	310	500	780	1.25	1.95	3.1	5	7.8	12.5	19.5
1600	2000 ⁽²⁾	18	25	35	46	65	65	150	23	370	600	920	1.5	2.3	3.7	6	9.2	15	23
2000	2500 ⁽²⁾	22	30	41	55	78	78	175	280	440	700	1100	1.75	2.8	4.4	7	11	17.5	28
2500	3150 ⁽²⁾	26	36	50	68	96	96	210	330	540	860	1350	2.1	3.3	5.4	8.6	13.5	21	33

IT Grade Table (ISO 286 Standard)

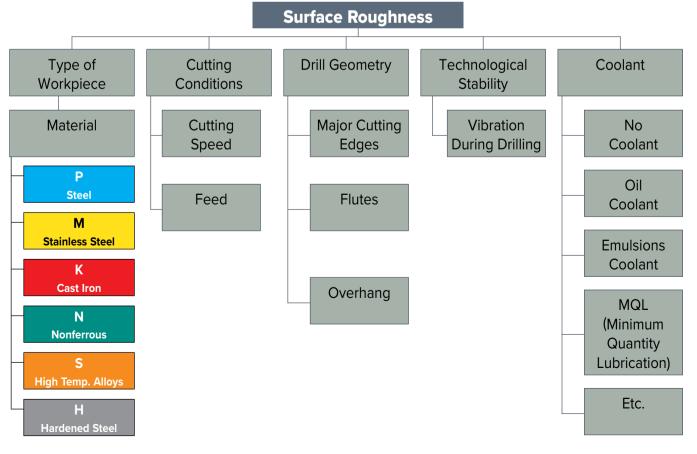
The distribution of the tolerance range relative to the nominal size is labelled by letters, the capital letters for holes and lowercase letters for shafts.


The value for the hole from "A" to "H" are positive (+), for the shaft from "a" to "h" negative (-). The value of the hole from "J" to "K" either positive (+) or negative (-), for shaft form "j" to "k" either positive (+) or negative (-). For example:

For hole Ø8H10 the tolerance will be +0.058 i.e., the minimum possible hole diameter is 8 mm while the maximum possible hole diameter is 8.058 mm. For hole Ø8JS10 the tolerance will be \pm 0.029 i.e., the minimum possible hole diameter is 7.971 mm while the maximum possible hole diameter is 8.029 mm. Note: In both examples the width of the tolerance is the same (0.058 mm) with a difference only in the range relative to the nominal size.



GENERAL DRILLING HANDBOOK

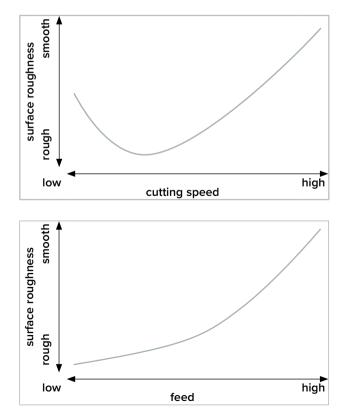

The hole diameter when drilling may be slightly different from the drill diameter. This is because the drill moves away from the hole axis even with minor irregularities. However, at the same time, hole accuracy by drilling depends on many factors related to both the hole parameters and the type of workpiece, as well as production unit.

Surface Roughness in Drilling

The surface roughness is a measure of the technological quality of a product. When machining parts by use of material removing processes such as turning, drilling, milling and miscellaneous operations always remain as irregularities on the machined surface. These irregularities occur with all types of processing, even with the most careful surface finishing. The size of irregularities determines the surface roughness. Surface roughness plays an important role on interaction with other part or environment. Rough surfaces usually wear more quickly and have higher friction coefficients than smooth surfaces. The less roughness of the treated surface of the part, the better it resists corrosion, i.e., damage under the influence of various chemicals - gases, liquids, etc. Significant roughness remaining on the treated surface also reduces the strength of machine parts, especially under alternating loads. It follows from this that the roughness of the processed surface significantly affects the performance characteristics of the part. In drilling, the main factors affecting surface roughness are type of workpiece, cutting conditions (speed, feed), drill geometry (major cutting edges, flutes, overhang), technological stability (vibration), coolant.

Type of Workpiece

One of the main factors affecting the chip shape and the possibility of effectively removing chips from the drilled hole is the type of material. With poor chip evacuation the machined surface can be damaged, thus achieving the same surface roughness value in different materials requires different efforts.

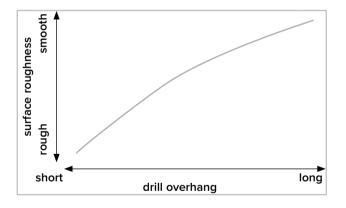

Material	Features of Chip Formation
P - Steel	Low carbon steels tend to form long chips.
M – Stainless Steel	Difficult chip control.
K – Cast Iron	Fragile and quickly breaking chips.
N - Nonferrous	There is a risk of buildup and chip evacuation.
S – High Temp. Alloys	Resistance to cutting causes difficult chip formation.
H – Hardened Steel	Short chips, no problem with chip evacuation.

Cutting Conditions

Feed and cutting speed have a significant impact on the surface roughness.

With an increase in feed, the roughness increases. This is explained by the fact that a large layer of metal is removed in one revolution of drill, related to the phenomenon of detachment and breaking of metal particles increases.

Changing the cutting speed affects the roughness in different ways. For example, in a certain range of speeds, a buildup forms on the cutting edge of the tool, which contributes to an increase in roughness and the formation of work hardening on the machined surface, then, with an increase in the speed, the buildup phenomenon stops, the temperature in the cutting zone rises and the chips are removed more smoothly, without breaking off the crystals, therefore, the magnitude of the microroughness decreases.


Drill Geometry

Drills, namely such components as major cutting edges geometry, flutes, and drill overhang (length of cutting part) have a direct influence on the surface roughness of the hole.

The right selection of major cutting edges geometry will reduce the load created on the drill while drilling and will also ensure optimal distribution of cutting forces, thereby making the drill work more stable which will be reflected in the surface roughness.

Flutes geometry ensures efficient chip evacuation preventing damage by chips to the machined hole surface.

Minimal tool runout is essential for successful hole drilling. The longer the drill overhangs, the more difficult it is to control its runout, which directly affects the roughness of the drilled hole.

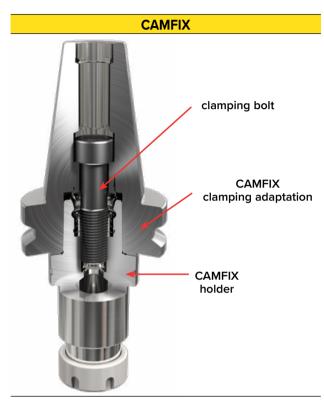
Technological Stability

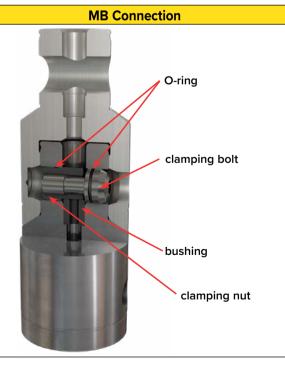
The loads arising during machining are transmitted by the tool and tool holder, as well as by the part and device in which it is clamped. The resulting loads are transferred by devices to the assembly units and mechanisms of the machine, due to which a closed technological system machine-tool-part is formed. The rigidity of this technological system is one of the main criteria for the performance and accuracy of the machine under load, thereby ensuring technological stability. Poor technological stability leads to vibrations of the cutting tool and machined part, which affects the roughness of machined surface.

Coolant

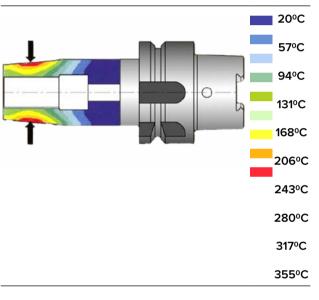
Coolant has a significant effect on the drilling process and the quality of the machined surface, since it facilitates the process of chip formation and evacuation, removes heat from the cutting zone and lubricates the friction surfaces.

Tool Holders


The fastening of the cutting tool has a significant effect on productivity of metalworking operations. Therefore, it is important to choose the right tooling. The toolholder consists of two parts: machine side and tool side.


The machine side is connected to a machine spindle. In most cases the type of machine side is chosen depending on the spindle type which exists in the machine. In some cases, when the machining required adapters (for example, machining with long overhang) or when purchasing a new machine, the type of machining side of tool holder is selected depending on the main type of operations, the required accuracy, and the type of workpiece.

The most common spindle types or machine side tool holders:


The most common modular system to increase overhangs

The **CAMFIX** and MB connection adapters enable the use of modular systems on machines with different spindle connection types. The tool side is designed for fixing and clamping the drill. The most common types of tool sides are ER collet chuck, thermal shrink chuck, power (**MAXIN**) chuck, hydraulic chuck, hydraulic heavyduty chuck, and EM side clamp chuck. Each tool side type has its own purpose, characteristics, and advantages.

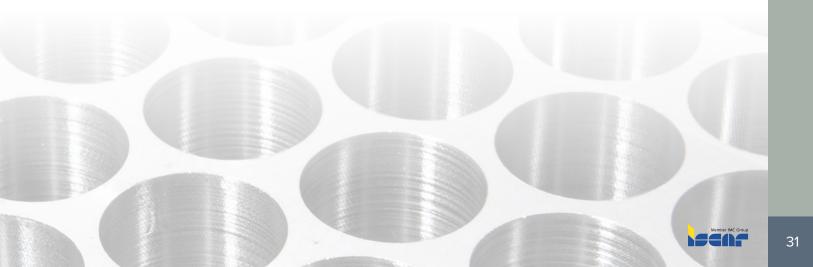
Thermal Shrink Chuck

The Thermal Shrink Chuck Is the Most Advanced Type of Machining Side of a Tool Holder (For end Cutting Tools with a Cylindrical Shank), Combining the Highest Accuracy of the Cutting Tool Positioning with an Extremely High Rigidity of the "cutting Tool - Machine Spindle" System. The Principle of Operation of Shrink Fit Chucks Is Based on the Property of Materials to Expand when Heated. The Chuck Is Heated in a Special Device, and Its Hole Is Enlarged Due to Thermal Expansion. Then a Tool Is Inserted Into It. and the Cartridge Is Cooled (In Air Or in a Special Device). The Unclamping Process Is Similar. The advantage of the shrink chuck is the high clamping force, high accuracy, and symmetrical design. However, when using a shrink chuck, it should be noted that each chuck is adapted to a specific shank diameter, and constant heating and cooling cycles can lead to severe wear of the chuck. Additionally, special equipment is required for tool changing.

ISCAR

Hydraulic Chuck

Hydraulic Expansion Technology

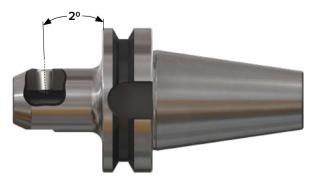

- 1 **The Oil Chamber System** Then the oil chamber system filled with hydraulic fluid, it has a damping effect on the clamped tool.
- 2 **The Expansion Sleeve** The expansion sleeve expands against the tool shank. This clamping process first centers the tool shank before fully clamping it over the whole surface.
- 3 **The Base Body** The machine side interface is located on the base body.
- 4 **The length adjustment screw** for fast and easy presetting.
- 5 **The dirt groove** The enormous clamping pressure of the **HYDRO-FIT** SF chuck creates a displacement of oil, grease, or lubricant residues into the groove, causing surfaces to remain dry.

In the hydraulic chuck, the tool is clamped by fluid pressure. To clamp / unclamp the chuck, simply turn the clamping screw. When tightening the clamping screw, the force is transferred to the piston, which in turn generates hydraulic fluid pressure. The hydraulic fluid pressure is transmitted to the wall-mounted sliding sleeve. This pressure causes the sleeve to compress around the tool shank creating a concentrated clamping force.

vibration damping

The advantages of the hydraulic chuck include high accuracy, user simplicity, and quick tool changes. Using this type of chuck can reduce vibration and significantly extend tool life.

EM Side Clamp Chuck


EM side clamp chuck suitable for cutting tools with Weldon and Whistle-notch shanks. The principle of operation is simple: the tool shank has a flat area, clamping is carried out by tightening the screw, the screw rests on the flat area, reliably fixing the tool.

The difference between chucks for the Whistle-Notch shank and Weldon shanks is the orientation of the clamping screw.

EM Side Clamp Chuck with Weldon Shank

EM Side Clamp Chuck with Whistle Notch Shank

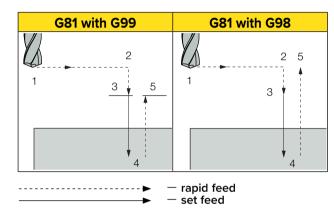
The clamping screw in the chuck for the Weldon shank is perpendicular to the central axis of the cutting tool, while the clamping screw in the chuck for the Whistle-Notch shank is at an angle in accordance with the flattened part on the shank. This allows the screw not only to push the cutting tool against the wall of the chuck but also to pull it inward. The primary advantages of the EM side clamp chuck are its relatively low cost and the absence of torque transfer limitations.

Tool Side Selection Considerations

When selecting the tool side, factors such as the drill shank type and the following parameters should be considered:

- Run Out (OD/ID)
- Gripping/ Torque Transmission (Nm/lbs*ft)
- Vibration Damping
- Balancing Quality (Grade/RPM)
- Rigidity/Stiffness
- Handling and Operability
- Shape limitations
- Maintenance and Tool Life
- Flexibility / Versatility
- Weight Limitation

Technological Drilling Method


Technological drilling methods or drilling cycles are defined motion processes (G-codes) for drilling in accordance with ISO 6983-1: 2009 standard. There are several drilling cycles differing in the technological process and thus in their parameterization. The most used drilling cycles are G81, G73, G83. The placement of the drill at the end of drilling cycle is defined by G98 or G99 code. When G98 is active, the drill will return to the initial point at completion of a single operation. When G99 is active, the drill will be returned to the drilling cycle start point when the canned cycle completes a single hole. Generally, using G98 is provided in case there are obstacles between the holes such as clamps or other features of the part.

G81 - Basic Drilling Cycle (without Pecking)

This cycle assumes continuous movement of the drill throughout the cycle.

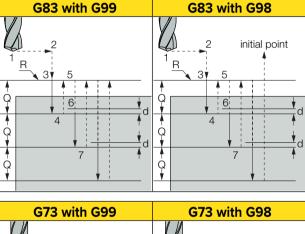
The drill starts moving from the initial point to cycle start point with rapid feed and then continues moving to the defined depth at the set feed, the drill retracts with rapid feed.

- **1-2** Rapid traverse to the X, Y coordinates of the drilling hole center
- 2-3 Rapid traverse to the drilling cycle start point
- 3-4 Drilling process to the defined depth at the set feed
- 4-5 Drill retracts with rapid feed

Syntax:

G81 X... Y... Z... R... F...

Parameter	Description						
Х	hole position in X-axis						
Y	hole position in Y-axis						
Z	drill hole depth						
R	cycle start point						
F	feed rate						


Example:

G98 G81 X15.5 Y20.5 Z-10.0 R0.5 F150 or G99 G81 X15.5 Y20.5 Z-10.0 R0.5 F150

G73 and G83 – Peck Drilling Cycle

The G73 is a canned peck drilling cycle with a short retract, whereas G83 is a canned peck drilling cycle with a full retract. The drill starts moving from the initial point to cycle start point with rapid feed and then continue moving by pecking to the defined depth at the set feed, at the end of each peck the drill retracts with rapid feed to distance is set within the machine (short retract) in case G73 is activated or to cycle start point (full retract) in case G83 is activated.

- **1-2** Rapid traverse to the X, Y coordinates of the drilling hole center
- 2-3 Rapid traverse to the drilling cycle start point
- 3-4 Drilling process to the Q depth at the set feed
- 4-5 Drill retracts with rapid feed
- **5-6** Rapid traverse to the start point of next step drilling process
- 6-7 Drilling process to the Q depth at the set feed
- ...-... This entire procedure is repeated until the drill reaches the defined depth position. Then, the drill is retracted with rapid feed to either the cycle start point or the initial point, depending on whether G99 or G98 is specified in the program.

Syntax:

G73 X... Y... Z... R... Q... F... G83 X... Y... Z... R... Q... F...

Parameter	Description						
Х	hole position in X-axis						
Y	hole position in Y-axis						
Z	drill hole depth						
R	cycle start point						
Q	depth of cut for each peck						
F	feed rate						

Example:

G98 G73 X15.5 Y20.5 Z-10.0 R0.5 Q F150 or

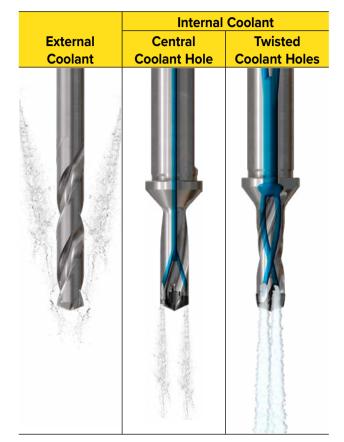
G99 G83 X15.5 Y20.5 Z-10.0 R0.5 F150

The Quick and Easy Way to Select Correct Drilling Cycle

The most recommended and productive drilling method is to use the canned drilling cycle without pecking, i.e. G81 code.

Efficient chip evacuation during drilling can often be very problematic and the deeper the hole, the more problematic the chip evacuation process. The solution to chip evacuation is to use a peck drilling cycle.

In the case of using the peck drilling cycle with a short retract, denoted by the G73 code, the drill does not fully exit the hole. Instead, the tool retracts a specified distance inside the hole. The purpose of G73 is to break stringy chips and pull them out of the holes. By keeping the drill inside the hole, the impact of drill vibration on hole quality is significantly reduced, especially for long drills.


In the case of using the peck drilling cycle with a full retract, denoted by the G83 code, the drill retracts completely out of the drilled hole at regular intervals to evacuate chips. This method, compared to the previously described methods, is the least productive and may result in lower tool life and potentially worse hole quality. Therefore, the peck drilling cycle with a full retract is recommended only when it is not feasible to effectively remove the chips using the methods described above.

Coolant in Drilling

One major issue encountered during drilling is the overheating of both the drill and the workpiece due to plastic deformation and friction. The temperature at the cutting area can reach several hundred degrees Celsius, which leads to various problems, including accelerated tool wear, workpiece deformations, changes in material properties, and impacts on the quality and geometry of the hole.

To dissipate heat and reduce heat generation from friction, coolant flow is supplied to the cutting region. The velocity of the coolant flow increases as the coolant holes become smaller. When the coolant emerges from the tool through the nozzle, it exerts a high velocity, effectively cooling the chips, lowering their temperature, and protecting the cutting edge from overheating. In the industry, various types of coolant fluids are used to prevent overheating, such as emulsion, oil, MQL (Minimum Quantity Lubrication), etc. The choice of coolant fluid depends on factors such as cutting parameters, material removal rate (MRR), hole depth, and properties of the machined material. Internal coolant supply is generally preferred over external coolant supply. Internal coolant is delivered through channels within the drill. There are two options for internal coolant channels in the drill: a central coolant hole or twisted coolant holes.

In addition to solving the heating problem, coolant also aids in chip evacuation during the drilling process. The pressure of the coolant helps push the chips out of the hole and prevents them from accumulating in the flutes of the drill. The deeper the hole, the more significant the effect of cooling on chip evacuation. Therefore, it is always necessary to strive to supply the maximum coolant flow that the machine can provide in the drill. As the material removal rate (MRR) increases, the required flow rate for chip evacuation also increases. Coolant also has a lubricating effect, reducing friction between the workpiece and the tool, between the chips and the tool, and between the chips and the workpiece. As a result, less force is required for chip evacuation, and reduced friction generates less heat. This leads to longer tool life and a more reliable process.

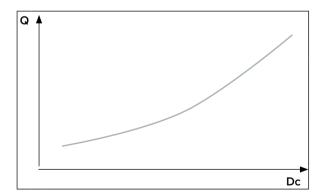
Pressure Vs. Flow

The main heat formation is around the cutting edge of the drill. To remove heat efficiently it is necessary to flow coolant at high speed as close as possible to the cutting area.

The flow velocity in a channel can be defined by:

 $v = \frac{Q}{A}$

Where:


v = Flow velocity

Q = Volumetric flow rate

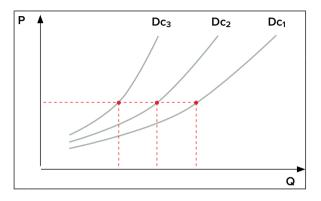
A = Cross section of coolant channel Based on the formula it can be concluded

that there is a direct relationship between volumetric flow rate and flow velocity and the higher the volumetric flow rate, the higher the flow speed.

Another conclusion that can be drawn is that the larger the diameter of the drill used, the higher the heat generation (and MRR) and we will need a higher coolant volumetric flow rate.

Where: Q = Volumetric flow rate Dc = Drill diameter

For a certain tool, there is a relationship between volumetric flow rate and pressure that can be defined by:


P=k×Q²

Where:

- P = Pressure
- k = Hydraulic resistance of the tool
- Q = Volumetric flow rate

The higher the coolant pressure provided at the inlet of the drill, the higher the coolant flow through the drill and vice versa to transfer higher flow through the drill, it is necessary to increase the pressure at the inlet to the drill. In cooling systems there is a limit to the pressure that can be generated in the system, as soon as the pressure of the liquid is higher than what the system defines a pressure discharge valve will open, and this will be reflected in a limitation of the flow rate. The aim is to supply liquid with maximum flow and for this purpose it is necessary that the pressure in the system will not exceed the upper limit defined in the cooling system.

The larger the diameter of the drill, the greater the flow can be provided for the same inlet pressure due to wider coolant channels, and this can be seen in the diagram below:

Dc1>Dc2>Dc3 hence k3>k2>k1

Where:

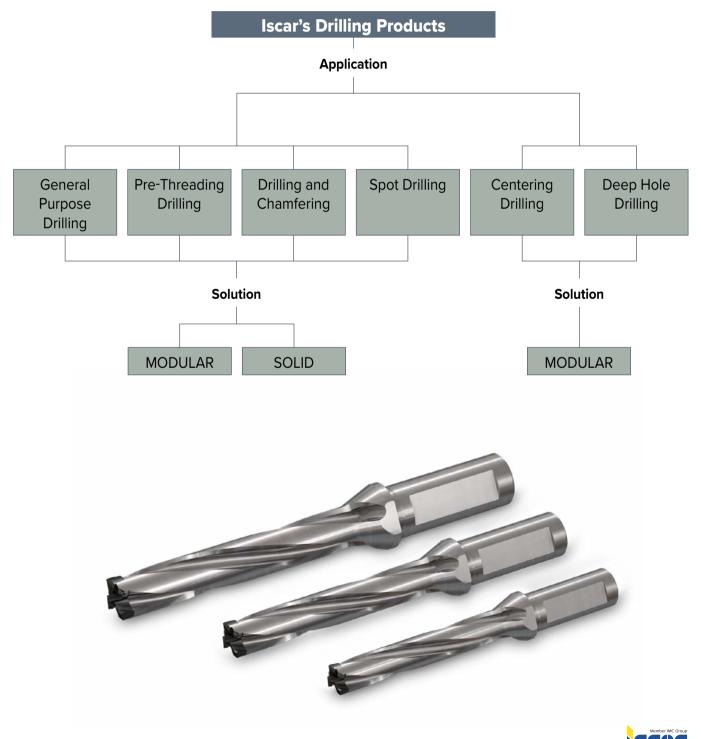
Q = Volumetric flow rate P = Pressure

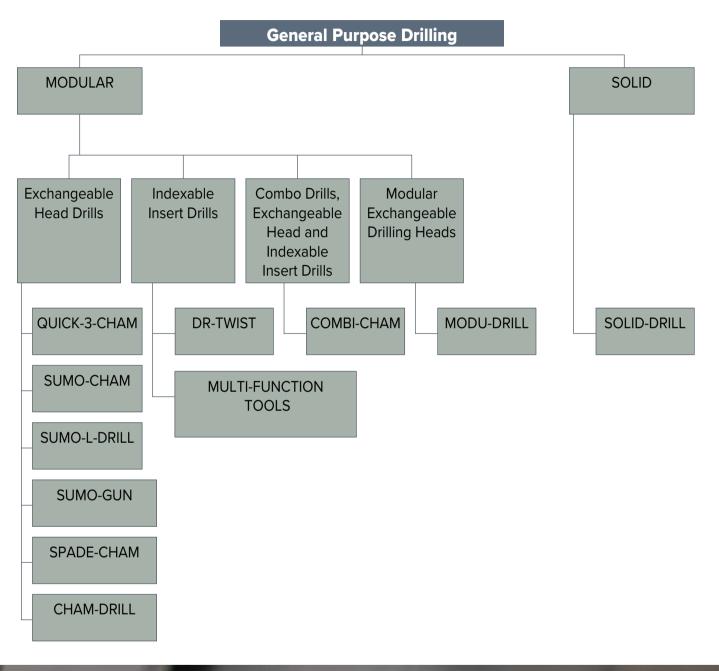
Dc = Drill diameter

k = Hydraulic resistance of each tool

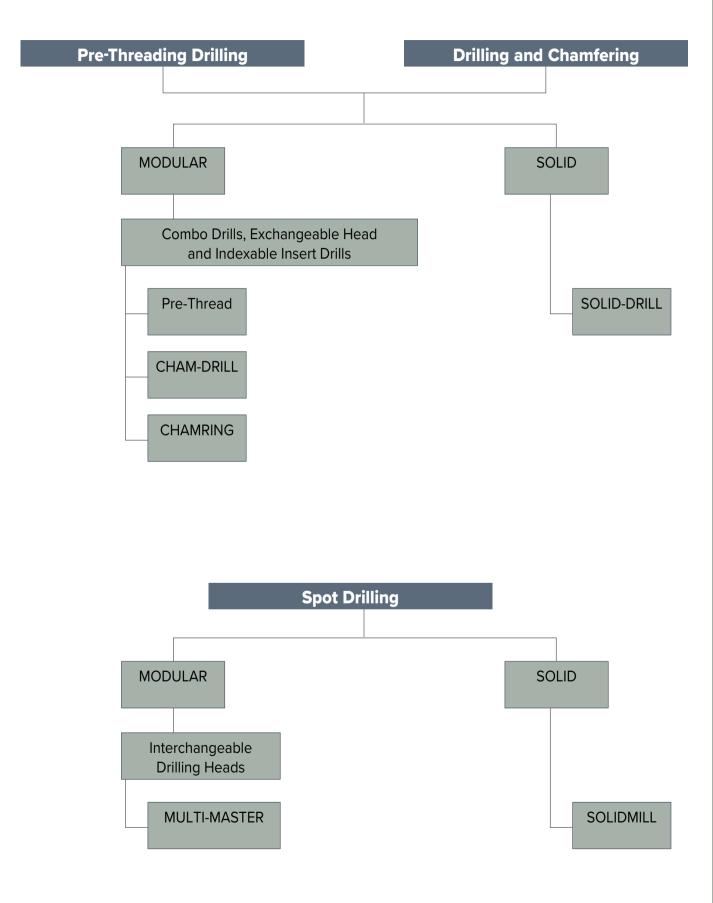
Pressure Ranges

Up to 20 bar – Low pressure (LP) 20 - 70 bar – Medium pressure (MP) 70 – 200 bar – High pressure (HP) Above 200 bar – Ultra high pressure (UHP)


ISCAR Knows How To Adapt Its Tools To All Possibsle Types Of coolant


ISCAR Drilling Products

ISCAR offers a wide range of drilling tools for most industries and applications, such as: general-use drill, central drill, spot drill, pre-threading drill, deep drill, stepped drill. **ISCAR** drilling products to produce different hole shapes on various surfaces.


Whatever the method of processing, **ISCAR** will identify a suitable tool according to the hole requirements.

ISCAR's Drilling Lines Depend on the Type of Operation

41

Exchangeable Head Drills vs Solid Drills

Often, the question arises regarding which tool to choose for holemaking: a drill with exchangeable drilling heads or a solid drill, especially when it comes to small diameter holes. The answer to this question is not always the same, and each case should be considered individually. Each type of drill has its own characteristics, advantages, and limitations. However, it is clear that a drill with exchangeable drilling heads can be a viable and competitive alternative to solid drills, as indicated by the following facts.

Multiple Geometries On One Body

A wide range of exchangeable drilling heads with different cutting geometries that can be assembled on one tool significantly improves the capabilities of the drill. This includes drilling in various surface types, such as flat surfaces, angular surfaces, convex surfaces, and concave surfaces, as well as whether there is a prehole or not. The availability of multiple exchangeable drilling head geometries allows for machining different hole types with a single tool, whether it be a straight hole, center hole, spot hole, or combined (stepped) hole. This flexibility ensures that a suitable geometry can always be selected to drill the requested hole with one tool.

Multiple Grades On One Body

A wide range of grades together with the ability to mount different drill heads on the same tool, as well as their easy and quick change functionality, opens the possibility of drilling holes in various materials with one tool.

Sustainability

If the cutting edge is damaged or worn, it is not necessary to replace the whole tool, and only the exchangeable drill head needs to be replaced.

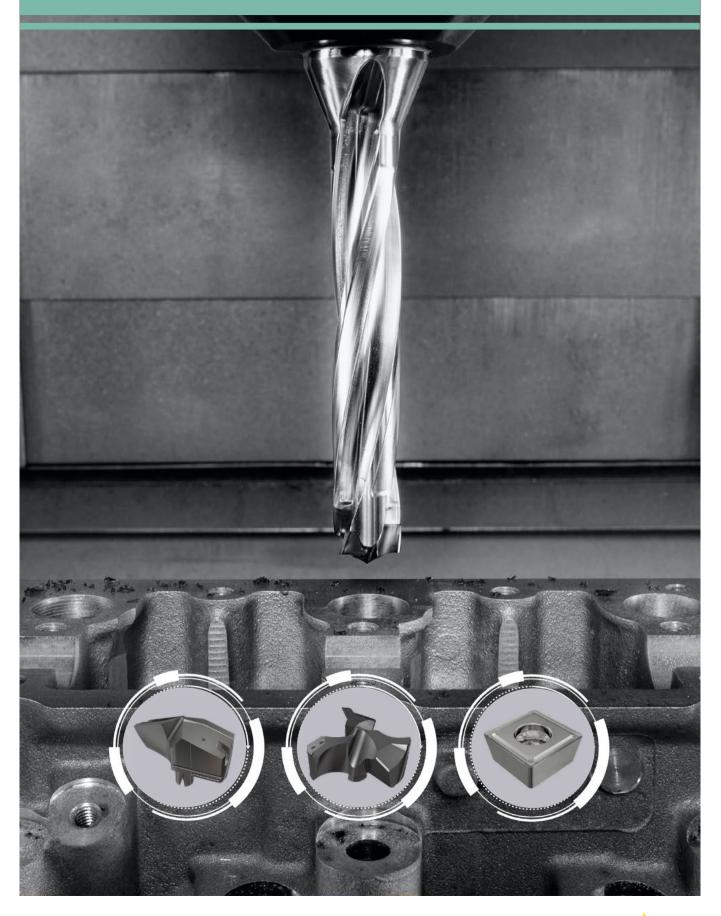
No Set-Up Time

There is no need for an additional adjustment after replacing the drilling head - no setup time – and an operator can change the drilling head without removing the shank from a machine tool spindle.

No Need for Regrinding

Using exchangeable drilling heads, there is possible to safely forget about tool regrinding; when the cutting edge wears out, the drilling head is quickly and most importantly easily replaced with a new one.

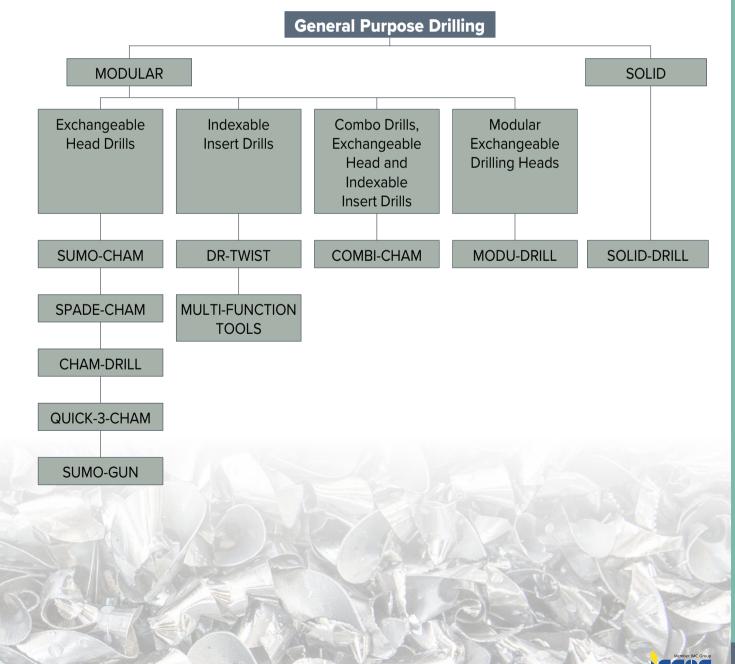
Stock Management


The modular concept of the drills makes it quick and easy to assemble the right tool from the available exchangeable drilling heads and shanks. Hence, customers don't have to order costly, specialized tools and wait months for delivery. If a drill is urgently needed for immediate production, a suitable solution is close at hand. Using exchangeable drilling heads can significantly reduce the amount of stock end users typically keep on hand, thereby reducing manufacturing costs.

Low Cost

Using drilling heads can significantly reduce cost since the drilling heads are cheaper than a solid drill.

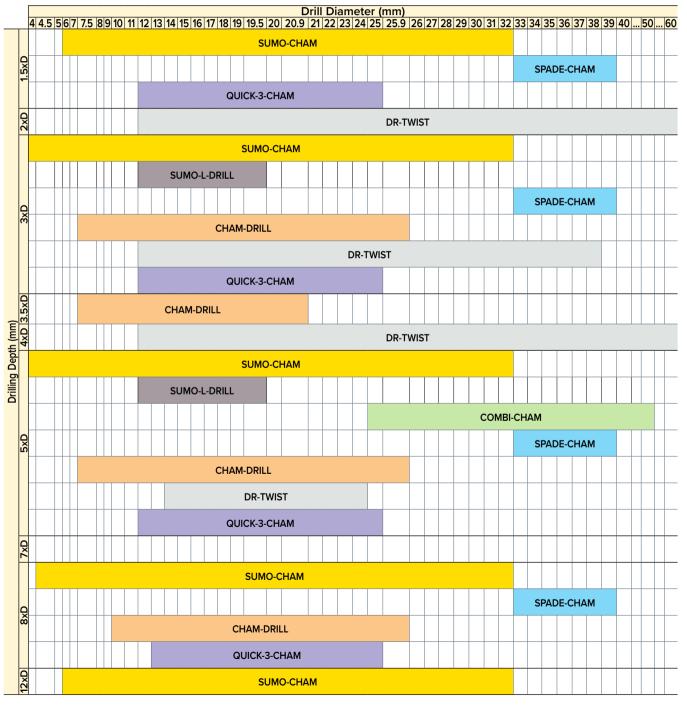
General Purpose Drilling

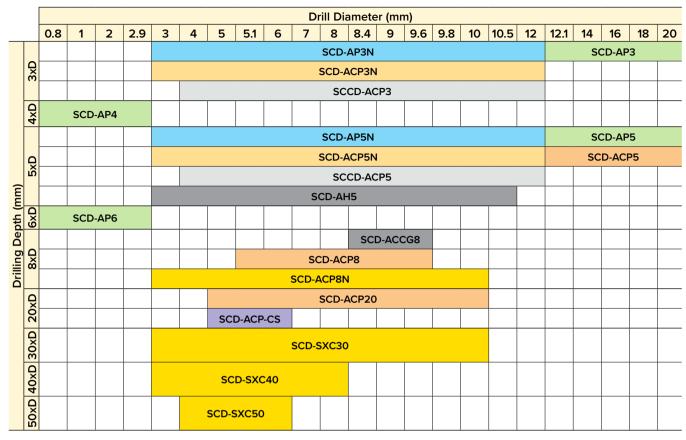

General purpose drills are the most common tool for machining holes. The drills in this category are designed for drilling holes in various materials with different accuracy. Drills of these types are widely used in almost any industry whether for single production or mass production. Depending on the tasks in the production of work and materials that need to be machined, drills differ in their design and coating type.

ISCAR offers a wide range of drills with various diameters and lengths

ISCAR Product Families for General Purpose Drilling

ISCAR provides a full solution package for drilling a variety of applications


ISCAR's range of products for generalpurpose drilling is categorized into two primary groups: modular tools and solid tools, each encompassing various families or lines of products. The distinction between drilling tools and the selection of the appropriate one's hinges on a range of factors, including hole size, hole type, precision prerequisites, surface finish demands, and more. These variables play a critical role in determining the most suitable tools for your specific drilling needs.


ISCAR Drill Lines Range for General Purpose Drilling

One of the main criteria for holemaking tool selection is the is the relationship between the drill diameter and the possible drilling depth. The tables shown below describe the working range of drills in each family and line for modular and solid **ISCAR** drill groups, offering valuable insights to assist in the tool selection process.

Modular Drills

Solid Drills

Solid Drills for Composite Materials

		Drill Diameter (mm)								
		3.3	4.19	4.85	6.37	7.94	10	12		
	25	SCD-FNPCD								
	2	SCD-CVD								
Ê			SCD-FNPCD							
(mm)	28		SCD-WPCD							
Depth			SCD-CVD							
Drilling De	32				SCD-FNPCD					
					SCD-WPCD					
					SCD-CVD					
	40						SCD-WPCD			
	45							SCD-WPCD		

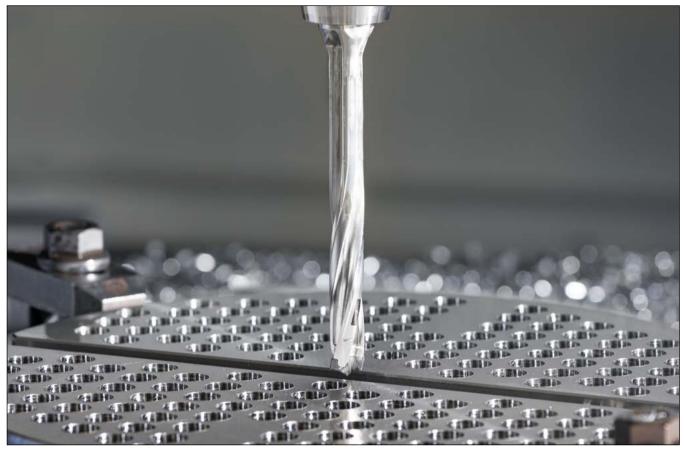
		Drill Diameter (mm)										
ب		10	13	14.9	15	20	25	25.9	30	33	35	40
Ē,	200	SUMC)-GUN									
Depth	250		SUMC	D-GUN								
	400	SUMO-GUN										
rilling										MODU-DRILL		L
D	600									I	MODU-DRIL	L

Exchangeable Head Drills

Modular drill systems have become an indispensable part of modern manufacturing. After all, increasing raw material prices, streamlining of warehouses, and consideration of life cycle costs are reason enough. Exchangeable drill heads are an exceptionally productive, precise, and an economical drilling solution.

A variety of head geometries and sizes can be accommodated in the same body, increasing flexibility and providing optimum performance in various materials and drilling applications. The fundamental structure of exchangeable head drills is elegantly simple, comprising two key components: the drill body and the exchangeable drill head.

exchangeable head drill


drill body exchangeable drilling head at the state

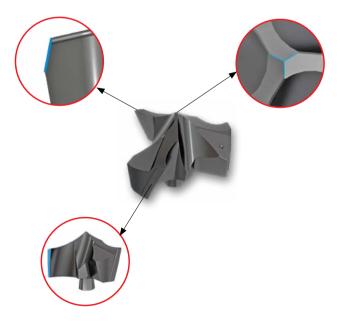
The drill body is made of steel and all drill bodies are equipped with internal coolant channels designed to perform two main functions such as cooling the cutting zone and improving chip removal. The drill body can carry exchangeable drilling heads of various diameters and geometries. Exchangeable drilling heads are made of tungsten carbide. The diameter dimension is produced with k7 accuracy according to the ISO 286-2 standard.

All drilling heads are coated with an additional coating optimized for their intended use. The combination of all these factors results in a significant increase in cutting performance and tool life compared to conventional drilling tools.

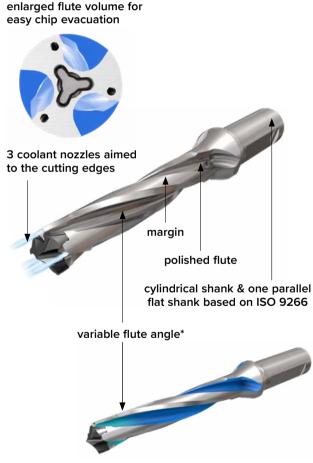
The exchangeable drill head features a unique self-locking interface that interlocks between the drill head and shank body, enabling a simple and quick tool exchange. Operators can replace the drill head without having to remove the drill body from the adapter or re-measure tool offset values, thus saving time. The drill head can be easily assembled while remaining on the machine.

QUICK-3-CHAM

The most advanced level of maximized productivity and cost efficiency come true in the **QUICK-3-CHAM** line, which includes three flute drills with exchangeable drilling heads and is designed to significantly increase productivity and reduce machining cycle time by up to 50% compared to conventional two-flute drills.


QUICK-3-CHAM applies its user-friendly drilling system for easy handling in accordance with the motto "no-setup time". QUICK-3-CHAM drills are available in the range of 12 to 25.9 millimeters (0.472 to 1.020 inch) diameters with 0.1 millimeter (0.004 inch) increments and are suitable for machining holes up to 8D deep. The **QUICK-3-CHAM** drill body designated D3N ... can carry 2 types of exchangeable drilling heads, H3P ... and F3P ..., while F3P ... drilling heads provide flat bottom holes.

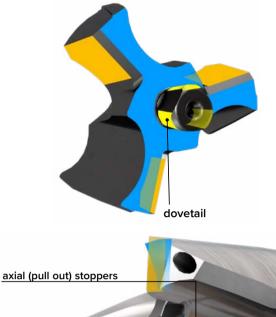
Exchangeable Drilling Heads

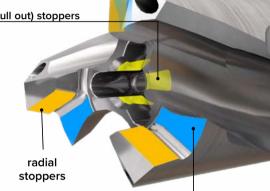

The H3P ... and F3P ... exchangeable drilling heads are made of IC908 TiAIN PVD nano layer coating grade for prolonged and predictable tool life. The geometry is suitable for machining both ISO P and ISO K materials - steel, ferritic and martensitic stainless steel, and cast iron. The QUICK-3-CHAM exchangeable drilling heads are designed with self-centering point geometry to guarantee drilling process stability, good centering, and smooth penetration into the material capabilities. The patented, durable, and precise chisel point combined with an appropriate gash angle successfully stands against a heavy cutting load. Patented concave cutting edges result in smooth and stable drilling together with a wavy edge shape that significantly contributes to generating optimal chip form and simplifying the chip evacuation process.

The corner chamfer improves wear resistance and strengthens the cutting edge.

Drill Body

The **QUICK-3-CHAM** drill body is based on a variable flute helix angle principle. This provides a durable body structure to resist high axial load and improve the dynamic rigidity of the body. The body is made from a high-grade steel tool with superior hardness for high wear resistance. A helical margin prevents chip adhesion between the body and the drilled hole. **QUICK-3-CHAM** tools are designed with internal coolant channels that supply efficient cooling and lubrication during the drilling process.

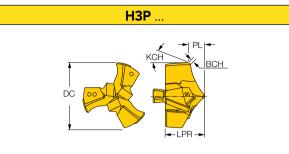

 * optimized chip evacuation
 * strengthens the tool (especially during exit with high feed)


Clamping Pocket

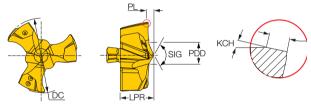
The clamping pocket has a durable structure to avoid plastic deformation and ensures high numbers of drilling head indexing. Radial stoppers secure the drilling head and ensure a reliable drilling process in a high feed machining environment. The head pocket has a large face contact surface that spreads the pressure during machining. 3 conical contact surfaces clamp the head inside the pocket to provide a precise and stable drilling process. Dovetail clamping prevents the head from being extracted from its drill body pocket during retraction. A close structure pocket was designed to increase heat resistance, which prolongs pocket tool life even in difficult conditions.

QUICK-3-CHAM, three flute CHAM-DRILL intelligent design supports performance for high efficiency drilling

Patented Pocket Design

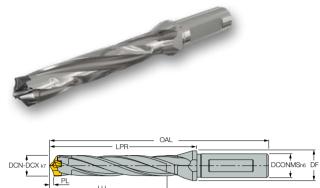


contact surface (axial stoppers)


Explanation of QUICK-3-CHAM Drilling Heads Description Example: H3P 120 - IQ IC908 1 2 3 **1** Designation of the Drilling Head H3P — exchangeable 3 flute drilling head with concave cutting edges **F3P** — exchangeable 3 flute drilling head with flat bottom holes 2 Cutting Diameter (DC) DC 3 Grade IC908

Basic Dimensions of QUICK-3-CHAM Drilling Heads

- **DC** cutting diameter
- LPR protruding length
- PL point length
- BCH corner chamfer length
- ${\rm KCH}-{\rm \ corner\ chamfer\ angle}$
- PDD pilot drill diameter
- **SIG** point angle


54

Explanation of QUICK-3-CHAM Drilling Bodies Description Example: D3N 120 - 060 16 Α 5D 1 2 3 4 5 6 1 Designation of the Drilling Body **D3N** — 3 flute drill body 2 Cutting Diameter minimum (DCN) DCN 3 Usable Length (LU) τυ. **4** Connection Diameter Machine Side (DCONMS) DCONMS 5 Shank Type A—one flat shank **R**—round shank

6 Drilling Depth

 $5D = 5 \times cutting diameter$

Basic Dimensions of QUICK-3-CHAM Drilling Bodies

DCN	— cutting diameter minimum
DCX	— cutting diameter maximum
DCONMS	— connection diameter
	machine side
DF	— flange diameter
LU	— usable length
LPR	— protruding length
PL	— point length

OAL — overall length

SUMO-CHAM

One of the leading drilling lines that undoubtedly deserves attention is the **SUMO-CHAM**.

These interchangeable drill heads are user-friendly, which means the **SUMO-CHAM** line ensures quick and easy replacement of an exchangeable drilling head with emphasis on **ISCAR**'s "no-setup time" principle. The line includes the smallest exchangeable drilling head in the market with a diameter of 4 mm (0.157 inches). These inserts are supplied with a specifically developed user-friendly key enabling easy mounting with no set-up time.

ISCAR SUMO-CHAM exchangeable drilling heads are available in a diameter range of 4 mm up to 32.9 mm (0.157 to 1.295 inch) diameters with 0.1 millimeter (0.004 inches) increments and are suitable for machining holes up to 12D deep.

Diameter Range Ø4-32 mm (0.157"-1.260")	L/D Ratio
DCN1.5D - Ø6-32 mm	Ø
DCN3D - Ø4-32 mm	
DCN5D - Ø4-32 mm	M 1
DCN8D - Ø4.5-32 mm	
DCN12D - Ø6-32 mm	
	ALALA
	1.5×D 3×D 5×D 8×D 12×D

* Avaliable with cylidrical or one flat shank

Exchangeable Drilling Heads

ISCAR SUMO-CHAM exchangeable drilling heads include 12 standard geometries that are suitable for the most popular and common material groups and applications commonly encountered in different industries.

These 12 standard geometries can be categorized into two main groups: standard geometries for general use and standard geometries dedicated for different applications.

All **SUMO-CHAM** exchangeable drilling heads designed with unique multifaceted chisel geometry provide self-centering ability. No pre-centering operation is needed for up to 5-times diameter tools.

Standard Geometries for General Use
ICP geometry: Designed for ISO P materials and ideally shaped for high productivity and excellent chip control in alloy steel.
ICP-2M geometry: Designed for ISO P materials providing high surface finish results of up to 1.6 μ m or 63 μ in Ra, better hole cylindricity and straightness of up to 0.05 mm (0.002 inches) for 100 mm (3.937 inches) length.
ICK geometry: Designed to machine ISO K materials at very high feed rates.
ICK-2M geometry: Designed for ISO K materials providing high surface finish results of up to 1.6 μ m or 63 μ in Ra, better hole cylindricity and straightness of up to 0.05 mm (0.002 inch) for 100 mm (3.937 inch) length.
ICM geometry: Designed to maximize productivity when machining austenitic stainless steel and other ISO M materials.
ICN geometry: Designed with sharp edges and polished chip flutes for ISO N materials. The ICN drilling heads ensure hole tolerance of IT8-9.

Standard Geometries Dedicated for Different Applications

By offering both general-use and application-specific geometries, **ISCAR**'s **SUMO-CHAM** exchangeable drill heads provide flexibility and efficiency for a broad spectrum of drilling needs in various industries. Users can select the appropriate geometry based on the materials and applications they work with, optimizing their drilling processes and achieving better results.

Drill Body

SUMO-CHAM drill bodies are engineered with various features aimed at optimizing hole machining operations. The key features of **SUMO-CHAM** drill bodies are:

- **Depth-to-Diameter Ratios: SUMO-CHAM** drill bodies are designed for machining holes with depth relation to diameter ratios such as: 1.5XD, 3XD, 5XD, 8XD and 12XD.
- Twisted Coolant Channels: The tools are embedded with the revolutionary technology of twisted coolant channels. This modified twisted coolant channel design features increased flute volume that greatly contributes to effective chip evacuation.
- Helical Margin: The helical margin helps prevent chip adhesion between the tool body and the inner hole surface. This prevents chips from sticking to the tool, leading to smoother and more effective drilling.

- High Helix Flute: The high helix flute design is focused on optimizing chip evacuation. It provides an angle that allows chips to be removed more efficiently during the drilling process, contributing to improved drilling performance.
- High Hardness Steel: The use of high-hardness steel in the construction of these drill bodies results in enhanced wear resistance. This means the tools are more durable and can withstand the rigors of machining operations.
- **Polished Flutes:** The polished flute surfaces ensure smooth and trouble-free chip evacuation.
- Interchangeability: SUMO-CHAM drill bodies offer interchangeability, allowing a single body to accommodate multiple-choice heads and a single head to be used with different bodies. This feature adds versatility to the tooling system, making it adaptable to specific machining requirements while being potentially cost-effective.

helical margin

high helix flute

high hardness steel

twisted coolant nozzles

polished flutes

accurate pocket

coolant directed to the cutting area

SUMO-CHAM drill bodies available with 4 types of shanks enable fast and easy tool change

Plain Cylindrical Shank / Round shank (DIN 1835-A and DIN 6535-HA): The shank is the most common and straightforward option for replacing existing solid and high-speed Steel (HSS) drills. The overall dimensions of the **SUMO-CHAM** drill body are almost identical to those of traditional drills, making them easy and fast to replace in collet chuck adapters.

One Flat Shank (ISO 9266): This is a specific design that helps with stability and alignment in certain machining applications.

MM Type (MULTI-MASTER Connection): SUMO-CHAM drill bodies with a **MULTI-MASTER** connection enables the use of a wide range of **MULTI-MASTER** standard shanks. High repeatability and fast change will reduce the set-up time.

FLEX-FIT type: Precise and fast method of using **SUMO-CHAM** DCNM drill bodies on **FLEX-FIT** standard adapters. Fast replacement and repeatability are provided.

Multi-Spindle and Swiss-type machines are commonly used in a wide range of applications in the industry. As these types of machines are typically crowded and have strictly limited space for tooling, tools need to be as short as possible to avoid collisions and to allow easy clamping and set up.

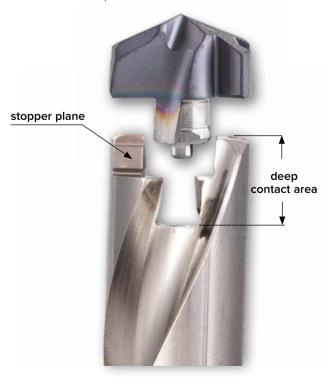
SUMO-CHAM drill bodies featuring a FLEX-FIT or MULTI-MASTER connection fulfil this need. A wide range of FLEX-FIT or MULTI-MASTER threaded adaptors was specifically designed to fit the drills and to have as short of an overhang as possible: HSK, CAMFIX, ER COLLET and a FLEX-FIT holder with 3 flat faces for Weldon clamping.

Clamping Pocket

The **SUMO-CHAM** clamping pocket design appears to be a well-thought-out solution for improving the clamping process in drilling applications.

The key factors of the **SUMO-CHAM** clamping pocket are:

Deep contact area:

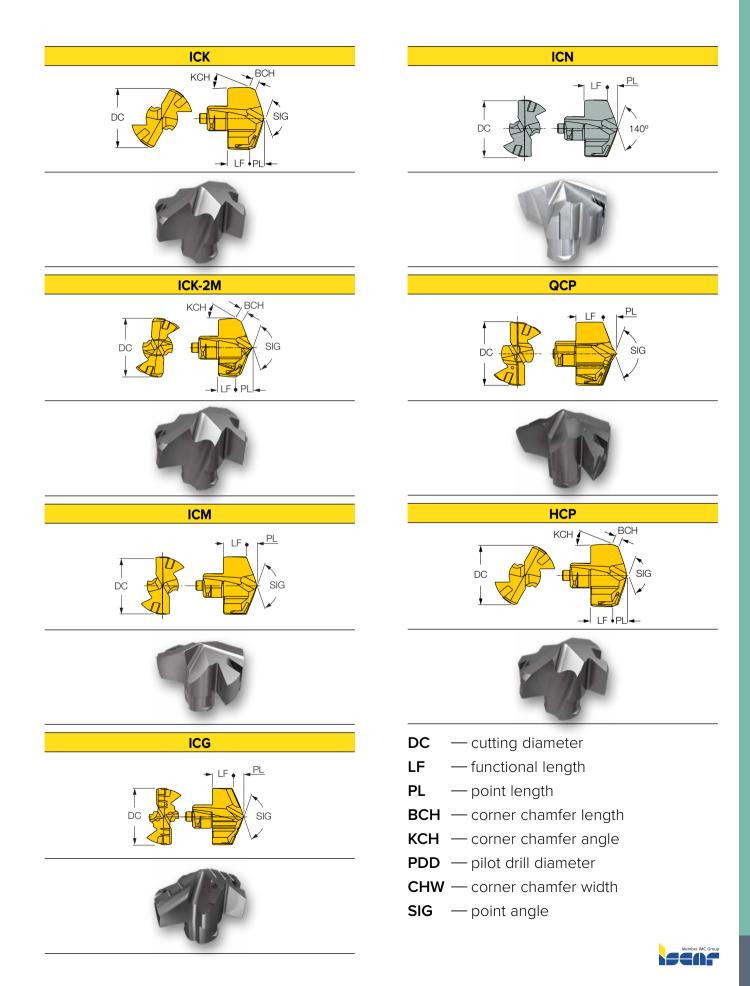

Provides a significantly high number of clamping indexes due to high precision and a deep contact area for insert mounting.

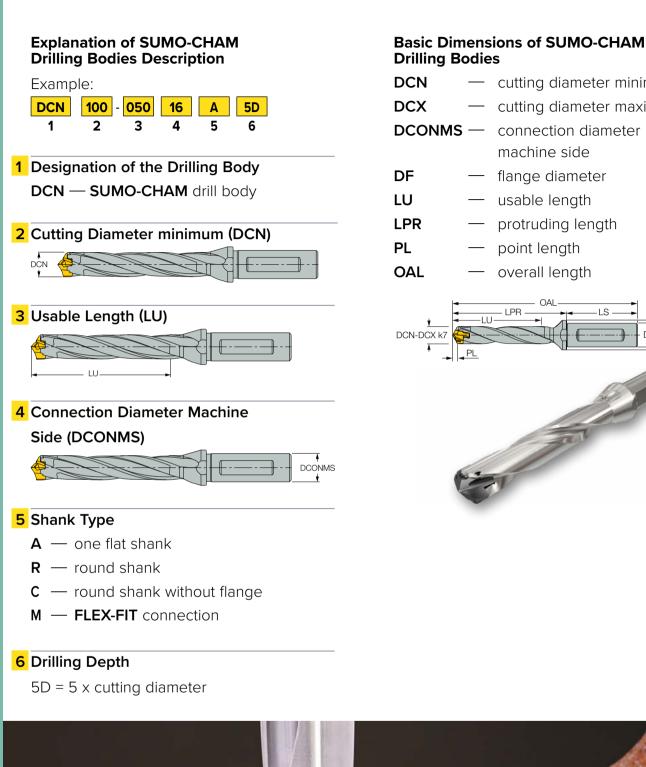
Clamping Rigidity: The design includes a precise cylinder area on the clamping part, which greatly increases rigidity.

Reduction of Internal Stress: The precise cylinder area not only enhances

rigidity but also reduces internal stress. Lower internal stress contributes to the overall durability of the clamping pocket system, prolonging tool life.

Rotation Stopper Planes: The rotation stopper planes on the tool are precision made to provide control on the drilling head position and support, which results in better tool performance and tool life.



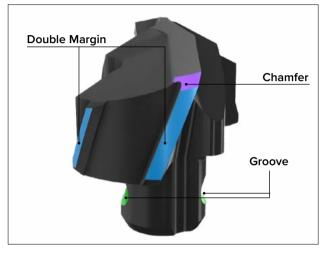

Axial Stopper: An axial stopper in the pocket prevents the insert from being pulled out during drilling. It is effective even after the clamping force has been lost (may happen when the drill's pocket wears out).

The **SUMO-CHAM** clamping pocket design offers a comprehensive set of features aimed at improving the precision, rigidity, and tool life in drilling applications. It focuses on both initial clamping and long-term retention of inserts, ensuring consistent and high-quality machining results.

Explanation of SUMO-CHAM Drilling Heads Description	Basic Dimensions of SUMO-CHAM Drilling Heads
Example:	ICP
ICP225IC9081231Designation of the Drilling HeadICP— geometry of exchangeable	
drilling head 2 Cutting Diameter (DC)	
3 Grade	ICP-2M
IC908	
	HCP
Self CENTERING	
	FCP
	KCH SIG PDD DC

Drilling	Drilling Bodies				
DCN		cutting diameter minimum			
DCX		cutting diameter maximum			
DCONM	s —	connection diameter			
		machine side			
DF		flange diameter			
LU		usable length			
LPR		protruding length			
PL		point length			
OAL		overall length			
↓ DCN-DCX k7		LPR LS DCONMSh6 DF			
		A CONTRACTOR OF			

SUMO-L-DRILL



The **SUMO-L-DRILL** is a drill with a unique concept of a side screw locking mechanism designed to withstand unstable machining environments. It performs well in unstable applications, such as interrupted cuts and asymmetrical holes. Additionally, it is suitable for cross-holes, inclined penetrations, chamfers, and other types of interrupted cutting operations. The starting diameter range is 12 to 19.5mm or 0.472 to 0.768-inch diameters, with 0.5-millimeter or 0.02-inch increments. The **SUMO-L-DRILL** drills are available with machining depth-to-diameter ratios of 3xD and 5xD. The **SUMO-L-DRILL** can be easily mounted on machining centers, milling machines, and lathes.

Exchangeable Drilling Heads

The ILP ...-2M drilling head features optimized geometry specially designed to withstand unfavorable conditions. The exchangeable drilling heads are made of IC908 TiAIN PVD nano-layer-coated grade, ensuring prolonged and predictable tool life.

The drill head is designed with two special symmetrical grooves on the shank for easy mounting and to provide a tight contact when fixing the screw. This design minimizes head chattering in the pocket under unfavorable drilling conditions and increases the number of head replacements on a single tool body.

Double margin system provides additional support, which ensures high-quality holes with a diameter accuracy of IT8-IT9 even under unfavorable conditions.

Chamfered cutting corners guarantee reliable and prolonged tool life even in difficult machining applications.

Drill Body

The drill body is produced with internal coolant nozzles using advanced 3D printing technology.

The SUMO-L-DRILL drill body has a robust construction and is made from a high-grade tool steel with superior hardness for high wear resistance.

Clamping Pocket

The unique clamping mechanism enables convenient and fast head replacement without the need to remove the drill from the machine. The screw clamping is designed to withstand tough conditions and prevents the pull-out phenomenon.

The almost straight and polished flute simplifies the use of this tool on lathes as a stationary tool, enabling smooth chip evacuation from the cutting zone.

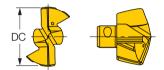
The double coolant nozzles allow for a rigid body structure while delivering a large volume of coolant directly into the cutting zone without interrupting coolant flow.

The pocket has been designed with an extremely robust structure. The cutting forces are distributed from the insert to the tool through the axial and radial surfaces (marked in blue), ensuring that the screw itself is not affected.

This design allows for an exceptionally high number of head replacements on a single body, even when drilling under unfavorable conditions and maintains high performance and repeatability results.

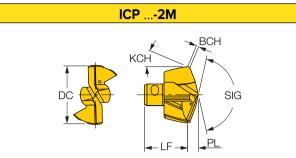
> A high grade of steel with superior hardness ensures high body resistance to wear.

The margin prevents chip adhesion between the body and the hole during the machining process.


SUMO-L-DRILL Drilling Heads Description Legend

1 Designation of the Drilling Head

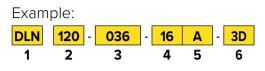
 $\ensuremath{\mathsf{ILP}}\xspace -$ exchangeable drilling head


2 Cutting Diameter (DC)

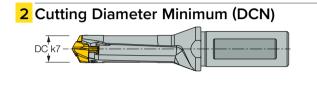
3 Grade

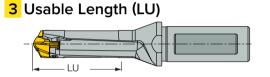
IC908

Basic Dimensions of QUICK-3-CHAM Drilling Heads

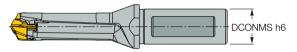


- DC cutting diameter
- **LF** functional length
- PL point length
- BCH corner chamfer length
- **KCH** corner chamfer angle
- **SIG** point angle



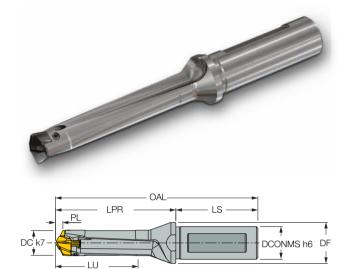

SUMO-L-DRILL Drilling Bodies Description Legend

1 Designation of the Drilling Body


DLN — drill body with side screw locking mechanism

4 Connection Diameter Machine

Side (DCONMS)


5 Shank Type

A — one flat shank

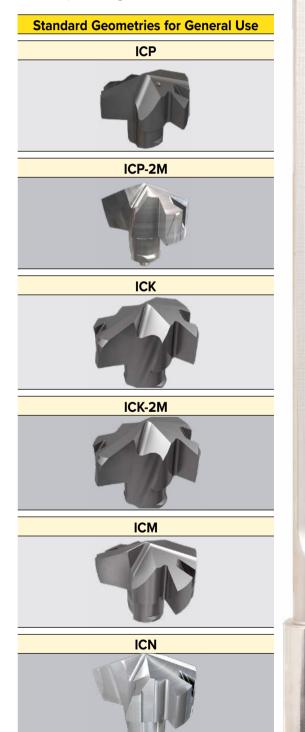
6 Drilling Depth

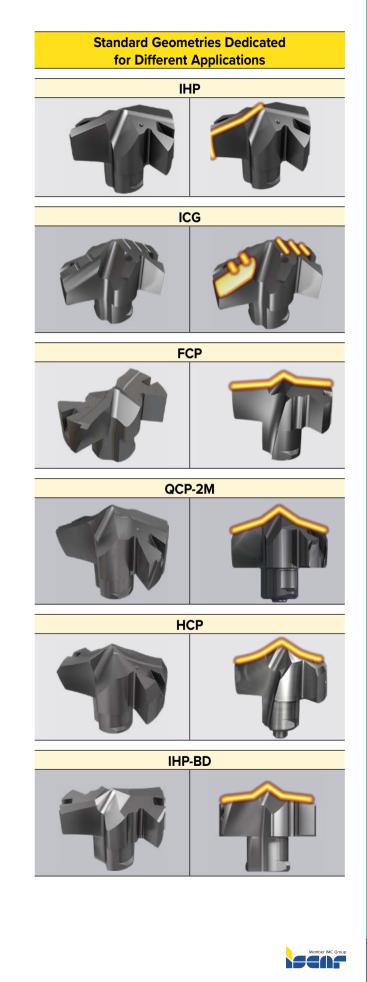
3D = 3 x cutting diameter

Basic Dimensions of SUMO-L-DRILL Drilling Bodies

- DCN minimum cutting diameter
- DCX maximum cutting diameter
- DCONMS machine side
 - connection diameter
- **DF** flange diameter
- LS shank length
- LU usable length
- LPR protruding length
- PL point length
- OAL overall length

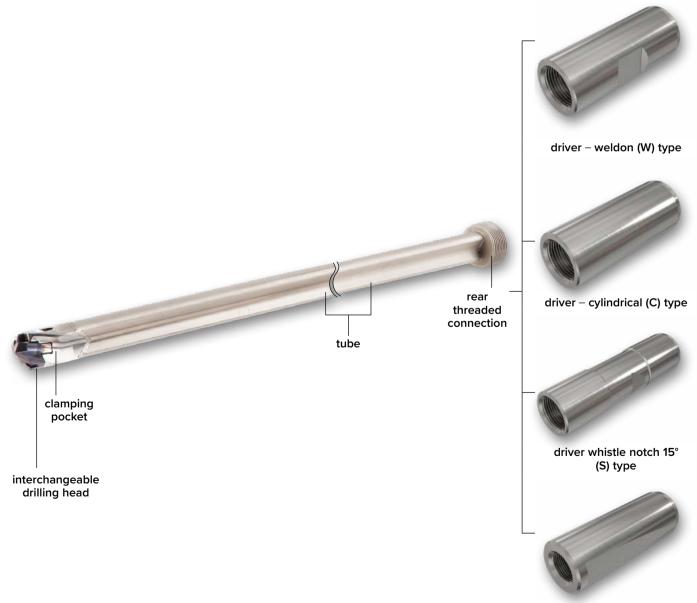
SUMO-GUN




The **ISCAR SUMO-GUN** line was developed for drilling deep holes in a diameter range of 10 to 25.9 mm (0.394 to 1.020 inches). The drill length is above 12XD with a maximum total length of 1000 mm (39.37 inches). **SUMO-GUN** enables replacement of the drilling head inside the machine – there is no need to remove the drill for head indexing.

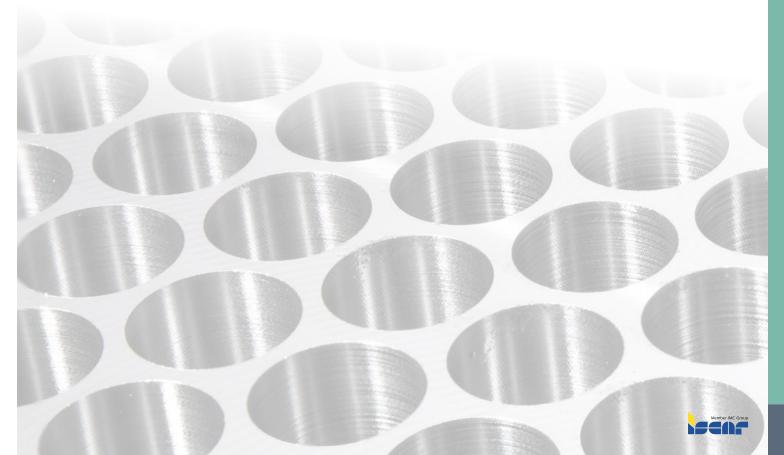
A polyamide plastic key is available for clamping and removing the **SUMO-GUN** head. The **SUMO-GUN** features two straight flutes carrying the standard **SUMO-CHAM** drilling heads. **SUMO-CHAM** drilling heads are fully effective, which enables drilling at much higher table feed rates when compared to most other gundrills available in the market. One of the advantages of the **SUMO-GUN** line is its versatility. It allows end users to clamp different head geometries according to the specific material and application requirements. This flexibility makes the **SUMO-GUN** suitable for a wide range of drilling tasks. **ISCAR SUMO-GUN** drills can be used on standard horizontal milling centers, lathes, multi-task machines and gundrill machines. This adaptability allows manufacturers to employ the **SUMO-GUN** line in different machining setups, enhancing their drilling capabilities.

Exchangeable Drilling Heads


ISCAR SUMO-GUN drills can carry any **SUMO-CHAM** interchangeable head with 12 standard geometries (described in chapter 2.3.2) making them extensively used in the metal cutting industries, including aerospace, automotive, dies and molds, power generation, etc.

Drill Body

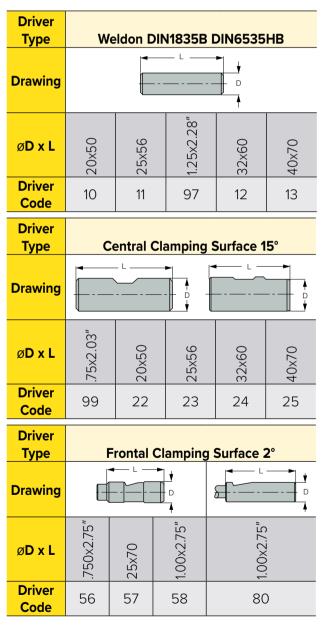

The **SUMO-GUN** drill body has a modular structure consisting of a tube, clamping pocket, and driver. The drill body features an innovative unique insert clamping pocket that can undergo at least 25 head replacements. The connection between the clamping pocket and tube is done by an advanced welding process. This welding method is chosen for its ability to provide high torque resistance, ensuring that the components remain securely connected during drilling, even under high stress conditions. The tube also features a rear threaded connection which enables attaching different standard driver types. The **SUMO-GUN** drill body is nickel coated for easy and uninterrupted chip flow and includes straight coolant channels.

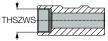


driver whistle notch (WN) type

ISCAR

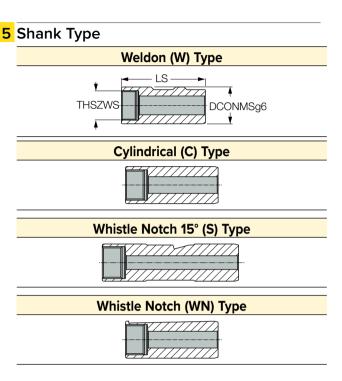
Explanation of SUMO-GUN Drilling Tube Description Example: MNSNT 100 - 400 MF16X1 1 2 4 3 **1** Designation of the Drilling Tube MNSNT — SUMO-GUN drill tube 2 Minimum Cutting Diameter (DCN) \rightarrow **3** Usable Length (LU) 4 Connection Thread (THSZMS)


Explanation of the Driver for the SUMO-GUN Drilling Tube Description


1 Designation of the Driver

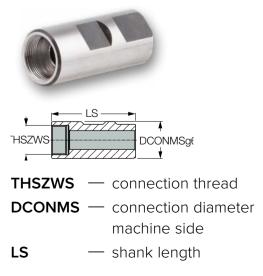
GDV — driver for SUMO-CHAM drilling tube

2 Driver Code

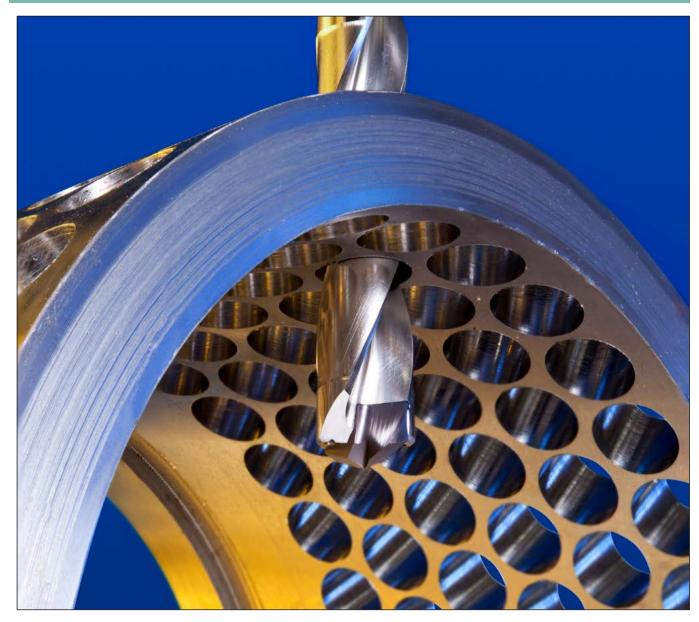


3 Connection Thread (THSZMS)

4 System of Measurement


- M metric system
- I imperial system

6 Connection Diameter Machine Side (DCONMS)



Basic Dimensions of the Driver for the SUMO-GUN Drilling Tube

76

SPADE-CHAM

The **ISCAR SPADE-CHAM** line includes large diameter drills carrying innovative indexable heads designed for machining holes with a diameter range of 33 to 40 mm (1.299 to 1.575 inches) in 0.5 mm (0.02 inch) increments and a 1.5, 3, 5, 8 drill length to diameter ratios.

The **SPADE-CHAM** features a unique design, utilizing carbide flexibility for self-locking, eliminating the need for clamping accessories.

The robust structure of the drill with the concave cutting edge design enables drilling at a high feed rate, providing very accurate IT8 – IT9 hole tolerance. The **SPADE-CHAM** line is suitable for interrupted cuts, unique cutting-edge inserts that provide excellent performance and increased productivity when drilling on inclined and round surfaces. The **SPADE-CHAM** drill body is designated DFN ...-IQ and can carry 2 types of exchangeable drilling heads, HFP ...-IQ and IFP ...-IQ.

Exchangeable Drilling Heads

HFP ...-IQ and IFP ...-IQ exchangeable drilling heads are made of IC908 TiAIN PVD nano layer coating grade for prolonged and predictable tool life. The cutting-edge geometry of **SPADE-CHAM** indexable heads provides a mechanically efficient cutting action, reducing power consumption and noise, and increasing material-removal rates.

The HFP ...-IQ drilling heads have a unique self-centering geometry that enables using up to 8xD long overhang without the need for a pilot hole operation, which is mainly intended for machining ISO P and ISO K materials. The IFP ...-IQ drilling head is designed for machining ISO P, ISO M and ISO S materials and enables using up to 5xD long overhang without the need for a pilot hole operation.

IFP ...-IQ

The design of the **SPADE-CHAM** body is made from special steel for high durability. High flute helix and polished flute surfaces provide a smooth and easy chip evacuation process. The internal coolant supply provides efficient cooling and lubrication during the drilling process.

Clamping Pocket

The SPADE-CHAM line employs an innovative insert positioning and locking mechanism that eliminates the need for clamps or screws commonly found on drills for larger diameters. This design allows for easy indexing on the machine to reduce setup. A special stopper prevents the drilling head from being extracted upwards from the pocket. Long stoppers provide high resistance to cutting forces, enabling applications under very high cutting conditions. The pocket design eliminates the need for an open or flexible construction, which may weaken the tool, thus enabling a high number of drilling head indexes on each tool. The SPADE-CHAM clamping mechanism ensures insert security and long body life.

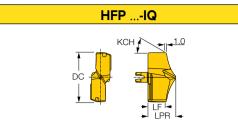
ISCAR

Explanation of SPADE-CHAM Drilling Heads Description

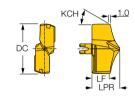
Example:									
HFP	HFP 400 - SPADE IQ								
1	2	3	4						

1 Designation of the Drilling Head

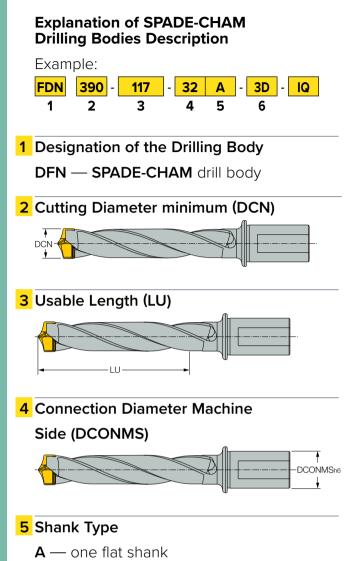
- HFP exchangeable drill heads for ISO P and ISO K materials
- IFP exchangeable drill heads for machining ISO P, ISO M and ISO S materials


2 Cutting Diameter (DC)

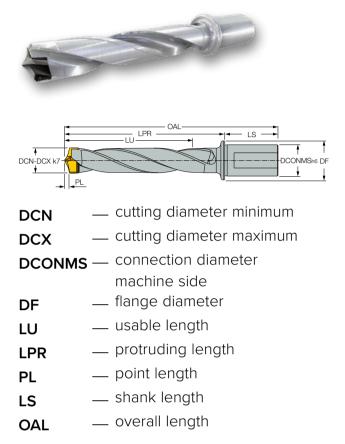
3 Grade


IC908

Basic Dimensions of SPADE-CHAM Drilling Heads



IFP ...-IQ


- **DC** cutting diameter
- LPR protruding length
- LF functional length
- **KCH** corner chamfer angle
- **SIG** point angle

6 Drilling Depth

3D = 3 x cutting diameter

Basic Dimensions of the SPADE-CHAM Drilling Body

CHAM-DRILL

ISCAR's **CHAM-DRILL** is a long-standing product drilling line with indexable heads that has been proven over the years and remains popular today.

The **CHAM-DRILL** line is designed for machining holes with a diameter range of 7.5 to 25.9 mm (0.295 to 1.02 inches) in 0.1 mm (0.004 inches) increments and 3, 5, and 8 drill length to diameter ratios. The **CHAM-DRILL** line was the first drilling line in the world designed with the principle of replaceable drill heads without use of screws or other locking devices and the adaptation of its diameter to different industrial uses.

The **CHAM-DRILL** drill body designated DCM ... and can carry 2 types of exchangeable drilling heads: IDI ...-SG and IDI ...-SK.

Exchangeable Drilling Heads

The IDI ...-SG and IDI ...-SK exchangeable drill heads have two ducts on the peripheral for providing coolant directly to the cutting zone. The indexable SPADE-CHAM drill heads are made of IC908 TiAIN PVD nano layer coating grade for prolonged and predictable tool life. The IDI ...-SK drill heads have special geometric features for drilling cast iron. The IDI ...-SG drill heads are designed for general use and are suitable for machining a large variety of workpiece materials.

combination with the helix flute angle provide effective chip evacuation while maintaining high rigidity.

Drill Body

The drills are hard touch coated with a hard (up to 60 HRc) layer to resist wear and corrosion. This improves the flute's surface finish, reduces friction, and provides excellent chip evacuation.

The CHAM-DRILL drills body were designed

angle in terms of hole accuracy, roundness,

the CHAM-DRILL drills, under recommended

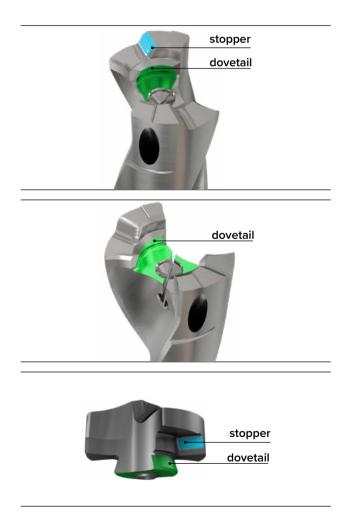
and straightness. The hole straightness of

cutting conditions, can be within 0.06 mm.

The CHAM-DRILL drills are equipped

with internal coolant channels and in

and produced with an optimal helix flute


DCM ...-3D DCM ...-3D IDI ...-SK DCM ...-5D IDI ...-SG DCM ...-8D

Clamping Pocket

The **CHAM-DRILL** clamping pocket is based on a principle of self-locking, controlled elasticity of the sides of the pocket in the tool. Positioning (centering) and mounting of the insert in the clamping pocket is designed according to the dovetail method. The dovetail joint is very strong because of the way the 'tails' and 'pins' are shaped, thus preventing the drilling head from being pulled out while removing the drill at the end of a drilling operation.

Transmitting radial torque until the drilling head is locked in the clamping pocket is carried out by stoppers in the drilling head and in the clamping pocket of the drill body.

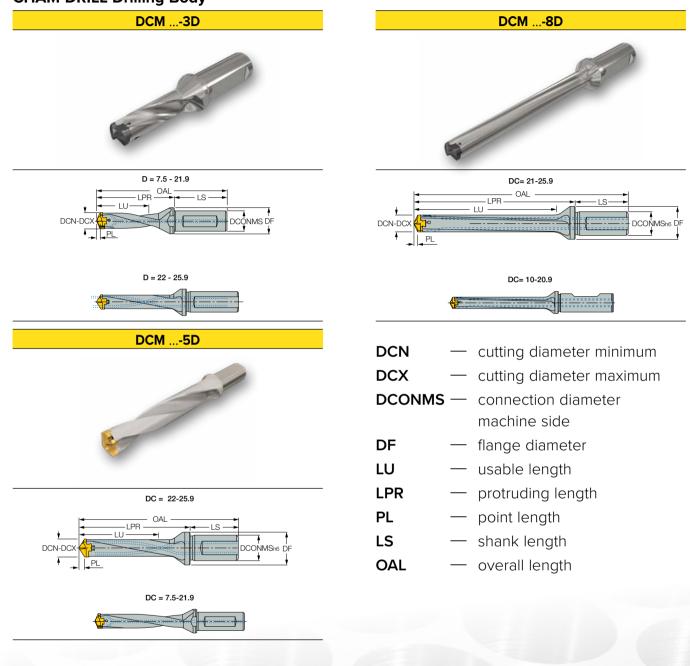
Explanation of CHAM-DRILLDrilling Heads DescriptionExample:IDI150- SGIC908123

2 Designation of the Drilling Head SG — exchangeable drilling

SG	—	exchangeable drilling
		heads for general use

SK — exchangeable drilling heads for drilling cast iron

3 Grade


IC908

Basic Dimensions of CHAM-DRILL Explanation of CHAM-DRILL Drilling Heads Drilling Bodies Description IDI ...-SG Example: DCM 150 045 20 Α 3D 2 3 4 5 6 1 **1** Designation of the Drilling Body 6.8-21.9 22.0-25.9 DCM — CHAM-DRILL drill body 2 Cutting Diameter minimum (DC) DC 3 Usable Length (LU) IDI ...-SK ксн всн **4** Connection Diameter Machine Side (DCONMS) → LF+PL DC 22.0-25.9 DC 6.8-21.9 5 Shank Type A — one flat shank DC — cutting diameter 6 Drilling Depth LF - functional length **3D** = 3 x cutting diameter PL - point length **SIG** — point angle **KCH** — corner chamfer angle

BCH — corner chamfer angle

Basic Dimensions of the CHAM-DRILL Drilling Body

Exchangeable Head Drills Cutting Conditions and Machine Power

Following these recommended conditions that are organized per drilling lines will help optimize the performance of holemaking applications.

QUICK-3-CHAM

			D=12	2-13.9			D	=14-15.9			D=16	5-17.9		D=18-19.9			
Material No.	V m/min	mm/rev	Net Power (KW)	Mean torque (Nm)	Axial Force (kN)	mm/rev	Net Power (KW)	Mean torque (Nm)	Axial Force (kN)	mm/rev	Net Power (KW)	Mean torque (Nm)	Axial Force (kN)	mm/rev	Net Power (KW)	Mean torque (Nm)	Axial Force (kN)
1			3.76	14.66	3.11		5.35	24.06	6.009		6.69	34.12	7.52		8.16	46.53	9.17
2	80- 100 -120	0.30	4.34	16.92	3.59	0.36	6.16	27.72	6.922	0.45	7.7	39.25	8.65	0.48	9.38	53.48	10.54
3		0.30 0.39 0.45	4.97	19.38	4.11	0.50 0.45 0.51	7.04	31.66	7.907	0.43 0.51	8.77	44.72	9.86	0.40 0.57 0.63	10.67	60.79	11.99
4	70- 85 -100	0.45	4.22	19.38	4.11	0.51	5.98	31.66	7.907	0.57	7.45	44.72	9.86	0.63	9.07	60.79	11.99
5	50- <mark>65</mark> -80		3.66	21.98	4.66		5.19	35.91	8.969		6.47	50.73	11.18		7.86	68.96	13.60
6	70- <mark>90</mark> -110		4.74	20.54	4.34		6.37	31.84	7.951		7.99	45.26	9.97		9.35	59.2	11.67
7	70- 85 -100	0.33 <mark>0.39</mark>	4.48	20.54	4.34	0.36 0.42	6.01	31.84	7.951	0.39 0.48	7.54	45.26	9.97	0.42 0.51	8.83	59.2	11.67
8	50- <mark>65</mark> -80	0.39	3.33	19.96	4.23	0.42	4.47	30.94	7.727	0.48	5.61	43.99	9.69	0.51	6.56	57.53	11.34
9	40- 50 -60		2.67	20.83	4.42		3.59	32.28	8.063		4.5	45.9	10.11		5.27	60.04	11.84
10	50- 70 -90	0.27	4.38	24.41	5.18	0.30	5.95	38.24	9.55	0.33	7.17	52.24	11.51	0.36	8.48	69.09	13.62
11	40- 60 -80	<mark>0.33</mark> 0.36	3.83	24.9	5.28	0.36 0.39	5.2	39.02	9.745	0.39 0.42	6.27	53.31	11.75	0.42 0.45	7.42	70.5	13.90
15	90- 125 -160		5.53	17.27	3.66		7.58	27.3	6.819		9.22	37.6	8.29		10.98	50.07	9.87
16	80- 110 -140		6.53	23.17	4.91		8.89	272.25	9.08		10.72	49.72	10.96		12.7	65.79	12.97
17	90- 135 -180	0.40	6.92	19.9	4.24	0.45	9.44	31.47	7.859	0.54	11.42	43.15	9.51	0.60	13.55	57.23	11.28
18	80- 110 -140	<mark>0.60</mark> 0.78	6.53	23.17	4.91	0.66 0.84	8.89	36.36	9.08	0.72 0.90	10.72	49.72	10.96	0.78 0.96	12.7	65.79	12.97
19	90- 125 -160		6.41	19.9	4.24		8.74	31.47	7.859		10.58	43.15	9.51		12.55	57.23	11.28
20	80- 110 -140		7.11	25.2	5.34		9.65	39.47	9.857		11.62	53.88	11.87		13.74	71.18	14.04

			D=2	0-21.9			D=22	2-23.9			D=2!	5-25.9	
Material No.	V m/min	mm/rev	Net Power (KW)	Mean torque (Nm)	Axial Force (kN)	mm/rev	Net Power (KW)	Mean torque (Nm)	Axial Force (kN)	mm/rev	Net Power (KW)	Mean torque (Nm)	Axial Force (kN)
1			9.4	59.19	10.56		10.69	73.79	12.02		12.06	90.45	13.55
2	80- <mark>100</mark> -120	0.51	10.79	67.99	12.13	0.54	12.28	84.72	13.80	0.57	13.84	103.8	15.55
3		0.60	12.26	77.22	13.78	0.63	13.93	96.13	15.66	0.66	15.69	117.66	17.63
4	70- <mark>85</mark> -100	0.66	10.42	77.22	13.78	0.69	11.84	96.13	15.66	0.72	13.33	117.66	17.63
5	50- <mark>65</mark> -80		9.04	87.59	15.63		10.27	109.04	17.76		11.57	133.46	20.00
6	70- <mark>90</mark> -110		10.79	75.53	13.47		12.31	94.4	15.38		13.92	115.97	17.38
7	70- <mark>85</mark> -100	0.45 <mark>0.54</mark>	10.19	75.53	13.47	0.48 0.57	11.63	94.4	15.38	0.51 0.60	13.14	115.97	17.38
8	50- <mark>65</mark> -80	0.54 0.63	7.57	73.4	13.09	0.66	8.64	91.75	14.94	0.60	9.77	112.7	16.89
9	40- <mark>50</mark> -60		6.08	76.6	13.66		6.94	95.73	15.59		7.84	117.6	17.62
10	50- <mark>70</mark> -90	0.39	9.89	89	15.88	0.42	11.38	112.2	18.28	0.45	12.96	138.9	20.81
11	40- <mark>60</mark> -80	<mark>0.45</mark> 0.48	8.65	90.82	16.20	0.48 0.51	9.96	114.49	18.65	0.51 0.54	11.34	141.74	21.24
15	90- 125 -160		12.88	64.9	11.58		14.9	82.27	13.40		17.06	102.35	15.34
16	80- <mark>110</mark> -140		14.8	84.78	15.12		17.04	106.88	17.41		19.4	132.28	19.82
17	90- <mark>135</mark> -180	0.66	15.84	73.91	13.18	0.72	18.27	93.37	15.21	0.78	20.84	115.78	17.35
18	80- <mark>110</mark> -140	<mark>0.84</mark> 1.02	14.8	84.78	15.12	<mark>0.90</mark> 1.08	17.04	106.88	17.41	0.96 1.14	19.4	132.28	19.82
19	90- 125 -160		14.66	73.91	13.18		16.91	93.37	15.21		19.3	115.78	17.35
20	80 -110 -140		15.99	9159	16.34		18.38	115.3	18.78		20.9	142.52	21.36

* The calculation of power, torue and axial force were done for the largest diameter in each range (for example, range of 12-13.9 were calculate with dia. 13.90)

For machine power calculation, use below link:

https://mpwr.iscar.com

The above table shows calculated machine power, torque, and axial force using recommended cutting conditions depending on the work material and drill diameter. It is highly recommended to pay attention to the axial force generated and to make sure the machine being used is capable of withstanding these loads.

SUMO-CHAM

	Material	Groups				Re	comme	ended	Machi	ning (Condit	ions				
											SUMO	-CHAN				
										Feed	vs. Dr	ill Dia	meter			
0			Tensile Strength [N/mm ²]	Hardness HB	Material No. ⁽¹⁾		D=4-4.9	D=5-5.9	D=6-7.9	D=8-9.9	D=10-11.9	D=12-13.9	D=14-15.9	D=16-19.9	D=20-25.9	D=26-32.9
ISO		Condition	<u>. </u>			V m/min		1	1	1	mm	/rev	1	1	1	
	<u><0.25% C</u>	1	420	125	1	80-110-140										
	non-alloy <u>≥0.25% C</u>		650	190	2	80-105-130	0.04			0.12	0.15	0.10	0.20	0.25	0.25	0.20
	steel and cast steel, <0.55% C	quenched and tempered	850	250	3	80-100-120	0.04	0.07	0.09	0.12	0.15	0.18	0.20	0.25	0.25	0.30
	free cutting	annealed	750	220	4	70-90-110	0.08		0.13	0.22	0.21			0.45		
	steel ≥0.55% C		1000	300	5	50-70-90	0.00		0.10	0.22	0.20	0.00		0.10	0.10	0.00
		annealed	600	200	6	80-100-120		0.07	0.09						0.05	
Ρ	low alloy and cast steel (less than 5% of	au anahad and	930	275	7	70-90-110	0.04	0.07	0.12	0.12	0.14 0.21	0.16	0.18	0.23	0.25	0.30
	alloying elements)	quenched and tempered	1000	300	8	50- <mark>70</mark> -90	0.08	0.10	0.15	0.18	0.21	0.24	0.26		0.35	
		tempered	1200	350	9	40-55-70	0.00	0.15		0.23	0.20	0.52	0.55			0.50
	high alloyed steel, cas	annealed	680	200	10	50- <mark>70</mark> -90	0.06	0.07	0.09	0.12	0.12	0.15	0.18		0.22	0.25
	steel and tool steel	quenched and	1100	325	11	40-60-80	0.07	0.09	0.11	0.16	0.17	0.20	0.23	0.25	0.27	0.30
		tempered					0.08	0.10	0.12	0.20	0.22	0.25	0.28	0.30	0.33	0.35
	stainless steel	ferritic / martensitic	680	200	12	40-55-70	0.05	0.06	0.08 0.09	0.10	0.12	0.14 0.17	0.16	0.16	0.18	0.20 0.27
	and cast steel	martensitic	820	240	13	40-55-70	0.07	0.08	0.10	0.15	0.18	0.20	0.24	0.26	0.30	0.35
М	stainless steel and cast steel	austenitic, duplex	600	180	14	30 <mark>-50</mark> -70	0.05 0.06 0.07	0.06 0.07 0.08	0.08 0.09 0.10	0.10 0.12 0.15	0.12 0.15 0.18	0.14 0.17 0.20	0.16 0.20 0.24	0.16 0.21 0.26	0.18 0.24 0.30	0.20 0.27 0.35
	aray cast iron (CC)	ferritic / pearlitic		180	15	90-125-160										
	gray cast iron (GG)	pearlitic / martensitic		260	16	80-110-140	0.04	0.10	0.12	0.15	0.20	0.25	0.30	0.35	0.35	0.40
к	nodular cast iron (GGG	ferritic		160	17	90-135-180	0.04	0.10	0.12	0.15	0.20	0.25	0.30	0.35		0.40
		pearlitic			18	80- <u>110</u> -140	0.08	0.15		0.30				0.55		
	malleable cast iron	ferritic		130	19	90-125-160										
_	1 1	pearlitic		230	20 21	80-110-140										
	aluminum- wrought alloys	not hardenable hardenable		60 100	21											
	wrougrit alloys	not hardenable		75	22	90-155-220										
	aluminum- ≤12% Si	hardenable		90	24								0.35			
	cast alloys >12% Si	high temperature		130	25	80-120-160				0.27	0.32	0.37	0.42	0.50	0.57	0.67
Ν	>1% Pb	free cutting	1	110	26		1			0.35	0.40	0.45	0.50	0.60	0.70	0.75
	copper	brass		90	27	90-155-220										
	alloys	electrolytic copper		100	1											
		duroplastics,			29											
	non metallic	fiber plastics														
		hard rubber		200	30	20.45.00										
	Fe based	annealed		200		<u>30-45-60</u>			0.05	0.00	0.00	0.10	0.10	0.10		0.00
	high	nardened		280							0.08		0.12	0.12	0.14	0.16
	temperature alloys Ni or Co	annealed hardened		250 350	33	20 <mark>-35</mark> -50			0.06	0.08	0.10 0.13	0.12	0.15 0.18	0.16	0.18 0.22	
S	based	cast		320					0.07	0.11	0.15	0.15	0.10	0.20	0.22	0.25
		pure	400	520	36				0.05	0.06	0.08	0.10	0.12	0.14	0.16	0.18
	titanium alloys	alpha+beta alloys, hardened	1050		37	20 <mark>-35</mark> -50				0.09	0.00 0.11 0.15	0.10 0.14 0.18	0.16	0.14 0.18 0.22	0.20	0.22
		hardened		55 HRC	38				0.05	0.06	0.08	0.10	0.12	0.14	0.16	0.18
H	hardened steel	hardened		60 HRC	39	20-35-50			0.06 0.07	0.09 0.12	0.11 0.15	0.14 0.18	0.16 0.20		<mark>0.20</mark> 0.25	0.22 0.27

Recommended cutting data

As a starting value, the middle of the recommended machining range should be used.

Then, according to the wear results, conditions can be changed to optimize performance. The data refers to IC908

• When using external coolant supply only, reduce cutting speed by 10%

• Use internal coolant supply when machining austenitic stainless steel

• When using more than 5XD drill ratio, reduce cutting parameters by 10%

ISCAR

SUMO-GUN

				Мас	hining (Conditio	ons for MNSNT							
						SUMO-GUN Feed vs. Drill Diameter								
ISO				Tensile Strength [N/mm ²]	Hardness HB	Material Group No.		D=10-11.9	D=12-13.9	D=14-15.9	D=16-19.9	D=20-25.9		
S	2 Mate		Condition				V (m/min)			mm/rev				
		<0.25% C	annealed	420	125	1	80- <mark>110</mark> -140	-						
	non-alloy	≥0.25% C	annealed	650	190	2	80- <mark>105</mark> -130	0.15 0.18 0.21						
	steel and cast steel,	<0.55% C	quenched and tempered	850	250	3	80- <mark>100</mark> -120		0.18 0.21	0.20 0.23	0.25 0.30	0.25 0.30		
	free cutting steel		annealed	750	220	4	70- <mark>90</mark> -110	0.21	0.24	0.27	0.35	0.35		
		≥0.55% C	quenched and tempered	1000	300	5	50- <mark>70</mark> -90							
			annealed	600	200	6	80- <mark>100</mark> -120							
Ρ	low alloy and			930	275	7	70- <mark>90</mark> -110	0.14	0.16	0.18	0.23 <mark>0.27</mark> 0.31	0.25		
	steel (less th alloying elem		quenched and	1000	300	8	50- <mark>70</mark> -90	0.17 0.21	0.20 0.24	0.22 0.26		<mark>0.30</mark> 0.35		
			tempered	1200	350	9	40- <u>55</u> -70	-						
	high alloyed steel, cast steel and tool steel		annealed	680	200	10	50- <mark>70</mark> -90	0.40	0.45	0.40				
			quenched and tempered	1100	325	11	40-60-80	0.12 0.14 0.17	0.15 <mark>0.17</mark> 0.20	0.18 <mark>0.20</mark> 0.23	0.20 <mark>0.22</mark> 0.25	0.22 <mark>0.24</mark> 0.27		
	stainless steel		ferritic / martensitic	680	200	12	40-55-70	0.12 0.13	0.14 0.15	0.16 0.18	0.16 0.19	0.18 0.21		
	and cast stee	el	martensitic	820	240	13	+0 00 70	0.15	0.15	0.18	0.21	0.24		
			ferritic / pearlitic		180	15	90-125-160							
	gray cast iroi	n (GG)	pearlitic / martensitic		260	16	80- <mark>110</mark> -140							
к			ferritic		160	17	90- <mark>135</mark> -180	0.20 0.23	0.25 0.28	0.30 0.33	0.35 <u>0.40</u>	0.35 0.42		
	nodular cast	iron (GGG)	pearlitic		250	18	80- <mark>110</mark> -140	0.27	0.32	0.37	0.45	0.47		
			ferritic		130	19	90- <mark>125</mark> -160							
	malleable ca	st iron	pearlitic		230	20	80-110-140							
			not hardenable		60	21								
	aluminum-wr	ought alloys	hardenable		100	22								
Ν			not hardenable		75	23	90- <mark>155</mark> -220	0.28 0.33	0.30 0.35 0.33 0.38	0.35 0.38	0.40 <mark>0.45</mark>	0.45 <mark>0.50</mark>		
	aluminum-	≤12% Si	hardenable		90	24			0.37	0.42	0.50	0.57		
	cast alloys	>12% Si	high temperature		130	25	80- <mark>120</mark> -160	-						

Recommended cutting data

Mandatory use of emulsion or oil when drilling For the 400mm long tools please reduce the cutting speed by 20%.

SPADE-CHAM

			Cutting Condition Recomme	ndation	IS			
						IFP		
						SPADE-CHAM		
				٩.		Feed vs. Drill Diameter		
SO	Material		Condition	Mtl. No.	V SFM	D=1.299-1.575		
-	Material	<0.25% C	annealed	1	260-360-460			
		≥0.25% C	annealed	2	260- <mark>340</mark> -430			
	non-alloy steel and cast steel, free cutting steel	<0.55% C	quenched and tempered	3	260- <mark>330</mark> -390	.012 <mark>016</mark> 020		
			annealed	4	230- <mark>300</mark> -360			
		≥0.55% C	quenched and tempered	5	160- <mark>230</mark> -300			
			annealed	6	260- <mark>330</mark> -390			
Ρ	low alloy and cast steel (les	SS		7 230-300-360		.012016020		
	than 5% of alloying elemen	its)	quenched and tempered	8	160- <mark>230</mark> -300	.012010020		
				9	130- <mark>180</mark> -230			
	high alloyed steel, cast		annealed	10	160- <mark>230</mark> -295	.010012014		
	steel and tool steel		quenched and tempered	11	130- <mark>200</mark> -260	.010012014		
	stainless steel and cast steel		ferritic / martensitic	12	130-200-260	.008- <mark>.011</mark> 014		
		ei	martensitic	13	130-200-200	.000011014		
М	stainless steel and cast ste	el	austenitic, duplex	14	100- <mark>160</mark> -230	.008 <mark>011</mark> 014		
		Fe based	annealed	31	100- <mark>150</mark> -190			
			hardened	32				
	high temperature alloys		annealed	33	65- <mark>115</mark> -155	.006- <mark>.008</mark> 010		
S		Ni or Co based	hardened	34	00 110-100			
			cast	35				
	titanium allovs			36	65- <mark>115</mark> -155	.007009011		
	titanium alloys		alpha+beta alloys, hardened	37		.007009011		

• Recommended cutting data

CHAM-DRILL

1		Material Groups		1	r	1		Recomm		achining Co		
									Feed vs. D	Drill Diamet	er mm/rev	
2 Materia	al	Condition	Tensile Strength [N/mm ²]	Hardness HB	Material No.	Cutting Speed V _c m/min	D=6.8-10.9	D=11-12.9	D=13-14.9	D=15-16.9	D=17-20.9	D=21-25.9
	<0.25% C	annealed	420	125	1	50-130						
	≥0.25% C	annealed	650	190	2	100-120						
non-alloy steel and cast	<0.55% C	quenched and tempered	850	250	3	90-110	0.12-0.2	0.15-0.25	0.2-0.3	0.25-0.35	0.25-0.45	0.25-0.45
steel, free cutting steel		annealed	750	220	4	90-120						
cutting steel	≥0.55% C	quenched and tempered	1000	300	5	70-90						
low alloy and ca	ct	annealed	600	200	6	80-130						
steel (less than s		quenched and	930	275	7	70-110	0.12-0.2	0.15-0.25	0.2-0.3	0.25-0.35	0.3-0.4	0.3-0.45
alloying element		tempered	1000	300 350	8 9	60-90 40-70						
		annealed	1200 680	200	10	50-80						
high alloyed stead steel and tool st		quenched and tempered	1100	325	11	40-70	0.12-0.2	0.12-0.22	0.15-0.25	0.2-0.28	0.25-0.33	0.25-0.35
stainless steel		ferritic / martensitic	680	200	12	20-50	0.08-0.14	0.12-0.22	0.12-0.15	0.14-0.20	0.16-0.24	0.15-0.28
and cast steel		martensitic	820	240	13							
stainless steel and cast steel		austenitic, duplex	600	180	14	20-50	0.08-0.14	0.12-0.22	0.12-0.15	0.14-0.20	0.16-0.24	0.15-0.28
		ferritic / pearlitic		180	15	90-140						
gray cast iron (G	ay cast iron (GG)			260	16	80-130	0.2-0.3	0.25-0.35	0.3-0.4	0.35-0.45	0.4-0.5	0.4-0.6
nodular cast iror		ferritic		160	17	100-180						
	1(000)	pearlitic		250	18	90-160						
malleable cast ir	on	ferritic		130	19							
		pearlitic not hardenable		230 60	20 21	90-160	0					
aluminum-wroug	ght alloys	hardenable		100	22	80-120	02-035	0.25-0.4	0.3-0.45	0.35-0.5	0.4-0.6	0.4-0.65
		not hardenable		75	23	90-160	0.2 0.33	0.20 0.1	0.0 0.10	0.00 0.0	0.10.0	0.10.00
aluminum-	≤12% Si	hardenable		90	24							
cast alloys	>12% Si	high temperature		130	25							
1	>1% Pb	free cutting		110	26							
copper alloys		brass		90	27							
		electrolytic copper		100	28							
non metallic		duroplastics, fiber plastics			29							
		hard rubber		0.00	30	20.50						
1.1.1	Fe based	annealed		200	31	30-50 20-40	0.05-0.1	0.08-0.13	0.1-0.15	0.12-0.18	0.12-0.2	0.12-0.22
high		hardened		280	32 33	20-40		0.09-0.15		0.15-0.2	0.15-0.23	
temperature alloys	Ni or Co	annealed hardened		250 350	33	20-50	0.00-0.12	0.09-0.15	0.12-0.18	0.15-0.2	0.13-0.23	0.15-0.25
ulloys	based	cast		320	35							
		pure	400	520	36							
titanium alloys		alpha+beta alloys, hardened	1050		37							
hardonad starl		hardened		55 HRC	38	20-50	0.06-0.12	0.09-0.15	0.12-0.18	0.15-0.2	0.15-0.23	0.15-0.25
hardened steel		hardened		60 HRC								
chilled cast iron		cast		400	40	20-50	0.06-0.12	0.09-0.15	0.12-0.18	0.15-0.2	0.15-0.23	0.15-0.25
cast iron		hardened		55 HRC	41							

- When using external coolant supply only, reduce cutting speed by 10%

• When using more than 5XD drill ratio, reduce cutting parameters by 10% As a starting value, the middle of the recommended machining range should be used. Then, according to the wear results, conditions can be changed to optimize performance. The data refers to IC908. For IC1008, cutting speed should be increased by 15%.

Exchangeable Head Drills Troubleshooting

Uncover insights for seamless drilling with **ISCAR**'s Exchangeable Drill Head Troubleshooting Table. This resource is tailored to guide and support users in resolving common challenges encountered during drilling operations using exchangeable drill heads.

QUICK-3-CHAM

		Troubleshooting	
Cutting Edge Chipping	1 2 3 4 5	Check the stability of the machine spindle, tool and workpiece clamping rigidity. Reduce feed rate, increase speed. If the drill vibrates, reduce cutting speed and increase feed rate. When drilling rough, hard or angled (up to 12° angular surface), reduce the feed rate by 30-50%. Check cooling lubricant. increase coolant pressure. in case of external coolant supply, improve jet direction and add cooling jets.	
Chisel Area Chipping	1 2 3	Reduce feed rate. Increase coolant pressure. Increase workpiece chucking force.	
Excessive Flank Wear	1 2	Reduce cutting speed. Increase internal coolant pressure.	
Excessive Land Wear	1 2 3 4 5 6	Check the runout and make sure it is within 0.02 mm T.I.R. (radial and axial). Reduce cutting speed. When drilling rough, hard or angled (up to 12° angular surface), reduce the feed rate by 30-50%. Increase coolant pressure. Check the chisel point runout and make sure it is within 0.02 mm T.I.R. Increase workpiece chucking force stability and rigidity.	

Built-Up Edge	1 2 3 4 5 6	Check the chisel point runout and make sure it is within 0.02 mm T.I.R. Worn cutting edge. replace head. Increase workpiece chucking force.	
Deviation of Hole Tolerance	3 4	Worn cutting edge. replace head. Increase workpiece chucking force.	Ø > D.nominal + 0.15mm D.nominal d < D.nominal - 0.03mm
Surface Finish Too Rough	1 2 3 4 5 6 7		
Inaccurate Hole Position	1 2 3 4 5	When drilling rough, hard or sloped surfaces (up to 12°), reduce the feed ra Drill a pre-hole for centering.	igidity.
Burrs on Exit	1 2	Reduce the feed rate by 50%-70% during exit. Replace the worn head.	

SUMO-CHAM

	, , , ,	Troubleshooting	
Cutting Edge Chipping	1 2 3 4 5	Check the stability of the machine spindle, tool and workpiece clamping rigidity. Reduce feed rate, increase speed. If the drill vibrates, reduce cutting speed and increase feed rate. When drilling rough, hard or sloped surfaces (up to 7°), reduce the feed rate by 30-50% when entering and exiting. Check cooling lubricant and increase coolant pressure. in case of external coolant supply, improve jet direction and add cooling jets.	
Chisel Area Chipping	1 2 3 4	Reduce feed rate. Increase coolant pressure. Check the adaptation. use hydraulic clamping chuck, MAXIN power chuck or side lock systems. Increase workpiece chucking force.	
Excessive Flank Wear	1 2 3	Check that the correct geometry is used. Reduce cutting speed. Increase internal coolant pressure.	
Excessive Flute Land Wear	1 2 3 4 5 6 7 8	Check that the correct geometry is used. Check the runout and make sure it is within 0.02 mm T.I.R. (radial and axial). Reduce cutting speed. When drilling rough, hard or sloped surfaces (up to 7°), reduce the feed rate by 30-50% when entering and exiting. Increase coolant pressure. Check the chisel point runout and make sure it is within 0.02 mm T.I.R. Increase workpiece chucking force stability and rigidity. If there is low pocket gripping force - replace drill body.	
Built-Up Edge	1	Increase cutting speed/feed. Increase coolant pressure.	

		Troubleshooting	
Deviation of Hole Tolerance	5	Check the runout and make sure it is within 0.02 mm T.I.R. (radial and axial cutting points). Reduce feed rate. Check the chisel point runout and make sure that it is within 0.02 mm T.I.R. Wrong cutting edge. replace head. Increase workpiece chucking force. Check the adaptation. use hydraulic clamping chuck, MAXIN power chuck or side clamping systems. Increase internal coolant pressure.	Ø > D nominal + 0.15mm + D.nominal + Ø < D nominal - 0.03mm
Surface Finish Too Rough	3 4	Check the runout and make sure it is within 0.02 mm T.I.R. (radial and axial). Adjust the feed for improved chip formation. In case of chip jamming - Increase the coolant flow and/or reduce the cutting speed. Increase the coolant pressure. Check the chisel point runout and make sure it is within 0.02 mm T.I.R. Use pecking cycle. Use double margin geometry.	Ra
Hole Not Straight:	1 2 3 4	Use 2M geometry. Drill a pre-hole for centering (check recommendations for pre-hole operation). Increase coolant pressure, improve jet direction in case of external coolant supply. Increase the feed.	
Inaccurate Hole Position	1 2 3 4 5	Check the runout and make sure it is within 0.02 mm T.I.R. (radial and ax Check the stability of the machine spindle, tool and workpiece clamping When drilling rough, hard or sloped surfaces (up to 7°), reduce the feed rate by 30%-50% when entering. Drill a pre-hole with a 140° point angle for centering. Check the chisel point runout and make sure it is within 0.02 mm T.I.R.	
Burrs on Exit	1 2 3	Reduce the feed rate by 30%-50% when exiting. Replace the worn head. Check the adaptation. use hydraulic clamping chuck, MAXIN power chuck or side clamping systems.	

SPADE-CHAM

	Troubleshooting							
Cutting Edge Chipping	1 2 3 4 5	Check the stability of the machine spindle, tool and workpiece clamping rigidity. Reduce feed rate, increase speed. If the drill vibrates, reduce cutting speed and increase feed rate. When drilling rough, hard or sloped surfaces (up to 7°), reduce the feed rate by 50%-70% during entrance and exit. Check cooling lubricant. increase coolant pressure. in case of external coolant supply, improve jet direction and add cooling jets.						
Chisel Area Chipping	1 2 3	Reduce feed rate. Increase coolant pressure. Increase workpiece chucking force.						
Excessive Flank Wear	1 2	Reduce cutting speed. Increase internal coolant pressure.						
Excessive Land Wear	1 2 3 4 5 6	Check the runout and make sure it is within 0.03 mm T.I.R. (radial and axial). Reduce cutting speed. When drilling rough, hard or sloped surfaces (up to 7°), reduce the feed rate by 50%-70% during entrance and exit. Increase coolant pressure. Check the chisel point runout and make sure it is within 0.03 mm T.I.R. Increase workpiece chucking force stability and rigidity.						
Built-Up Edge	1 2	Increase cutting speed/feed. Increase coolant pressure.						

Tranklaskasting							
Deviation of Hole Tolerance	5	Troubleshooting Check the runout and make sure it is within 0.03 mm T.I.R. (radial and axial cutting points). Reduce feed rate. Check the chisel point runout and make sure it is within 0.03 mm T.I.R. Worn cutting edge. replace head. Increase workpiece chucking force. Increase internal coolant pressure.	Ø > D nominal + 0.15mm D nominal Ø < D nominal - 0.03mm				
Surface Finish Too Rough	3 4 5		Ra Marine Marine				
Hole Not Straight	•	Drill a pre-hole for centering (check recommendations for pre-hole operation). Increase coolant pressure; improve jet direction in case of external coolant supply. Increase the feed.					
Inaccurate Hole Position	 Check the runout and make sure it is within 0.03 mm T.I.R. (radial and axial). Check the stability of the machine spindle, tool and workpiece clamping rigidity. When drilling rough, hard or sloped surfaces (up to 7°), reduce the feed rate by 50%-70% during entrance. Drill a pre-hole with a 140° point angle for centering. Check the chisel point runout and make sure it is within 0.03 mm T.I.R. 						
Burrs on Exit	1 2	Reduce the feed rate by 50%-70% during exit. Replace the worn head.					

CHAM-DRILL

		Troubleshooting	
ear Cutting Edge Chipping	1 2 3 4 5	Check the stability of the machine spindle, tool and workpiece clamping rigidity. Reduce feed rate, increase speed. If the drill vibrates, reduce cutting speed and increase feed rate. When drilling rough, hard or sloped surfaces (up to 6°), reduce the feed rate by 30-50% when entering and exiting. Check cooling lubricant and increase coolant pressure. in case of external coolant supply, improve jet direction and add cooling jets. Check that the correct geometry is used.	
Excessive Flank Wear	2 3	Reduce cutting speed. Increase internal coolant pressure.	
Chisel Area Chipping	1 2 3 4	Reduce feed rate. Increase coolant pressure. Check the adaptation. use hydraulic clamping chuck, MAXIN power chuck or side lock systems. Increase workpiece chucking force.	
Excessive Flute Land Wear	1 2 3 4 5 6 7 8	Check that the correct geometry is used. Check the runout and make sure it is within 0.02 mm T.I.R. (radial and axial). Reduce cutting speed. When drilling rough, hard or sloped surfaces (up to 6°), reduce the feed rate by 30-50% when entering and exiting. Increase coolant pressure. Check the chisel point runout and make sure it is within 0.02 mm T.I.R. Increase workpiece chucking force stability and rigidity. If there is low pocket gripping force - replace drill body.	
Built-Up Edge	1	Increase cutting speed. Increase coolant pressure.	

_			
Deviation of Hole Tolerance	5	TroubleshootingCheck the runout and make sure it is within 0.02 mm T.I.R.(radial and axial cutting points).Reduce feed rate.Check the chisel point runout and makesure that it is within 0.02 mm T.I.R.Wrong cutting edge. replace head.Increase workpiece chucking force.Check the adaptation. use hydraulic clamping chuck,MAXIN power chuck or side clamping systems.Increase internal coolant pressure.	. Ø ≥ D nominal ± 0.15mm . D nominal . J nominal . J nominal - 0.03mm
Surface Finish Too Rough	1 2 3 4 5 6	Check the runout and make sure it is within 0.02 mm T.I.R. (radial and axial). Adjust the feed for improved chip formation. In case of chip jamming - increase the coolant flow and/or reduce the cutting speed. Increase the coolant pressure. Check the chisel point runout and make sure it is within 0.02 mm T.I.R. Use pecking cycle.	Ra
Insufficient Pocket Gripping Torque	1	Check unlocking gripping torque with tk dcm torque key. if there is no click indication - replace drill head. Increase coolant pressure.	
Inaccurate Hole Position Insufficier	1 2 3 4 5	Check the runout and make sure it is within 0.02 mm T.I.R. (radial and ax Check the stability of the machine spindle, tool and workpiece clamping When drilling rough, hard or sloped surfaces (up to 6°), reduce the feed rate by 30-50% when entering. Drill a pre-hole with a 140° point angle for centering. Check the chisel point runout and make sure it is within 0.02 mm T.I.R.	,
Burrs on Exit	1 2 3	Reduce the feed rate by 30-50% when exiting. Replace the worn head. Check the adaptation. use hydraulic clamping chuck, MAXIN power chuck or side clamping systems.	

Indexable Insert Drills

If the main goal is economical production, then the ideal solution for the machining holes is a drill with indexable inserts. Drills with indexable inserts are reliable and versatile.

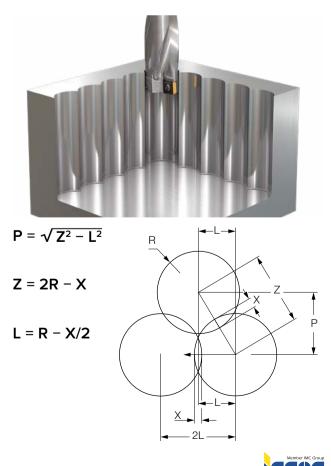
A characteristic feature of indexable insert drills is the ability to drill holes with a diameter that is larger than the diameter of the drill itself. To do this, on a lathe, the drill can be shifted relative to the axis of the part by 0.8 - 3.5 mm, depending on the design of the tool (diameter, insert size, etc.).

At the machining center, eccentric bushings or adjustable drill chucks are used for this. Also, drills with indexable inserts have the ability to drill a concave or inclined surface without using preliminary preparation. For such operations, it is only necessary to reduce the feed. The drills with indexable inserts show excellent performance in the processing of interrupted holes and are also capable of boring operations. Indexable insert drills do a good job with the above tasks. The drills with indexable inserts are mainly used for processing large and medium diameter holes with shallow depth, usually up to 4D.

This type of drill is considered not very productive due to the inability to use high feed per tooth when drilling because of the insufficient rigidity of the drill.

The drill body with a replaceable carbide insert was patented in the 80's, and throughout time this tool has not ceased to be modified. Let's go back to the 80's, and to the prerequisites for such an important invention, which became widely popular. The main principle was the convenience of operation - namely, the quick replacement of the cutting carbide insert.

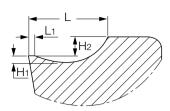
This principle has been preserved in our time, but the structure of the drill body and replaceable inserts has changed based on the realities of the manufacturing industry, the materials from which parts and mechanisms are made, and the equipment on which the drilling process will be carried out.

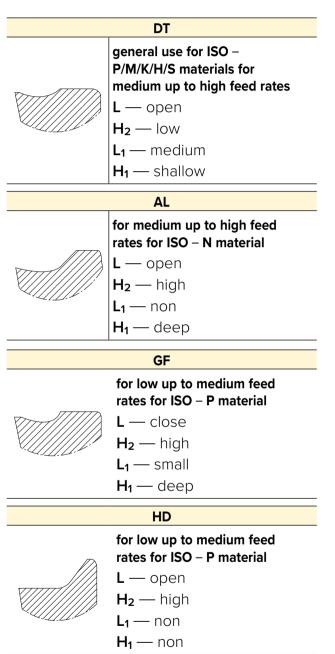


DR-TWIST

The DR line of holemaking tools is designed to provide an economical solution, suitable for all types of materials. These tools are designed primarily for semi-finishing operations and exhibit a high level of accuracy, even when subjected to interrupted cut machining conditions, or while drilling stacks or sloped surfaces. Furthermore, with the right edge geometry these tools can easily perform an angular penetration holemaking operation, drilling into the material and exiting with flat burr-free exit.

These tools are known to be less susceptible to unstable machining conditions, making them ideal for unbalanced holemaking operations associated with vibration. An optional use of DR drills is for removing material from deep cavities – similar to the plunger's function. The material removal rate is lower than that of the plunger, but the tooling cost is also lower. In interrupted cutting, it is recommended to reduce the machining conditions by 50%. Attached is a sketch and the calculations required for the correct overlapping sidestep pattern which must be employed so the drill will function properly and fully cover the surface to be removed.




Indexable Drilling Inserts

DR drills carry square inserts with a variety of chipformers and grades for machining a wide range of materials. The **DR-TWIST** line includes 6 types of inserts depending on the purpose and tool diameter.

AOMT Insert Designation	No. of Cutting Edges	Drill Diameter	Chipformer
AOMT	2	Ø12-13.5	DT HD
AOGT Precise Insert	2	Ø12-13.5	AL
SOGX Precise Insert	4	Ø14-24	AL
SOMX	4	Ø14-24	DT GF HD
SOMT	4	Ø25-80	DT GF HD
SOGT Precise Insert	4	Ø35-44 Ø74-80	AL

Chip control is one of the most important factors for tool performance to facilitate chip evacuation and prevent tool damage. Chipformer, grade, and cutting conditions must be adjusted to achieve an optimal chip shape. **ISCAR** designed 4 types of chipformers: DT, GF, HD, AL.

The geometry of the chipformer is designed according to its main purpose and directly depends on the machined material.

- DT is a chipformer designed for general use with an emphasis on machining steels. Chipformer geometry consists of land whose function is to strengthen the cutting edge, rake angle for chip shaping and deflector used for chip breaking. The combination of an open and shallow chipformer design with a wide land and a low deflector provides a special advantage when drilling at medium and high feeds.
 - **GF** is a chipformer designed for machining soft materials such as steel belonging to ISO P groups 1-11. The narrow land and positive angle create a deep and closed design. Narrow land improves cutting edge life but is not a barrier to chips getting into the chipformer pocket. The positive angle gives the chips the correct shape, preparing them for deflector breakage when drilling steel at low to medium feeds.
- HD is a chipformer designed for machining low carbon steel and other soft materials. It features a high deflector that cuts the material into short chips which are easily evacuated along the flutes. The HD chipformer avoids the long and curly chips that may jam the drill's gullets, damage the tool, poorly affect hole quality, and interrupt the drilling process.
- AL is a chipformer designed for machining aluminum and other non-metallic materials. Sharp cutting edges, combined with a positive angle, can provide high quality machining of this ductile material.

Material Groups		Low	v Feed				High
·			HD				
	1-11 steel		G	F			
ISO P					DT		
	12-13 stainless steel ferritic and martensitic		HD				
					DT		
ISO M	14 stainless steel austenitic and duplex (ferritic-austenitic)			DT			
ISO K	15-20 cast iron				DT		
ISO N	21-28 nonferrous					AL	
ISO S	31-37 high temp		DT				
ISO H	38-41 hard steel		DT				

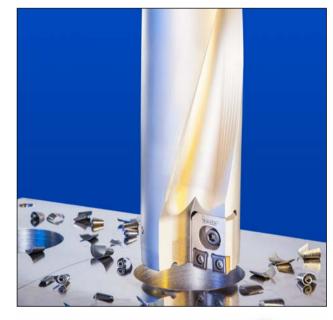
Drill Body

The DR drill body was designed with twisted coolant holes that pass through the drill flutes. This design leaves more room for the chips to flow out of the hole uninterrupted. The coolant holes do not pass through the center core of the drill; therefore, the drill is stronger and more resistant to torsion. A clamping pocket was designed to set inserts at a specific angle giving the right balance to reduce vibration and cutting force.

The DR drill body is made of steel, featuring a body hardness up to 55 HRc and hard touch nickel coating for better wear resistance and smooth chip flow. **DR-TWIST** drill bodies are available in drilling depths to diameter ratios of 2xD, 3xD, 4XD and 5xD and in a diameter range of 12 to 80 mm (for more details please refer to catalog). The drills are available in whole metric sizes as well as half sizes in the above-mentioned range.

The DR-TWIST Line Contains 3 Types of Tools

• DR-...-N for general applications, providing phenomenal results.

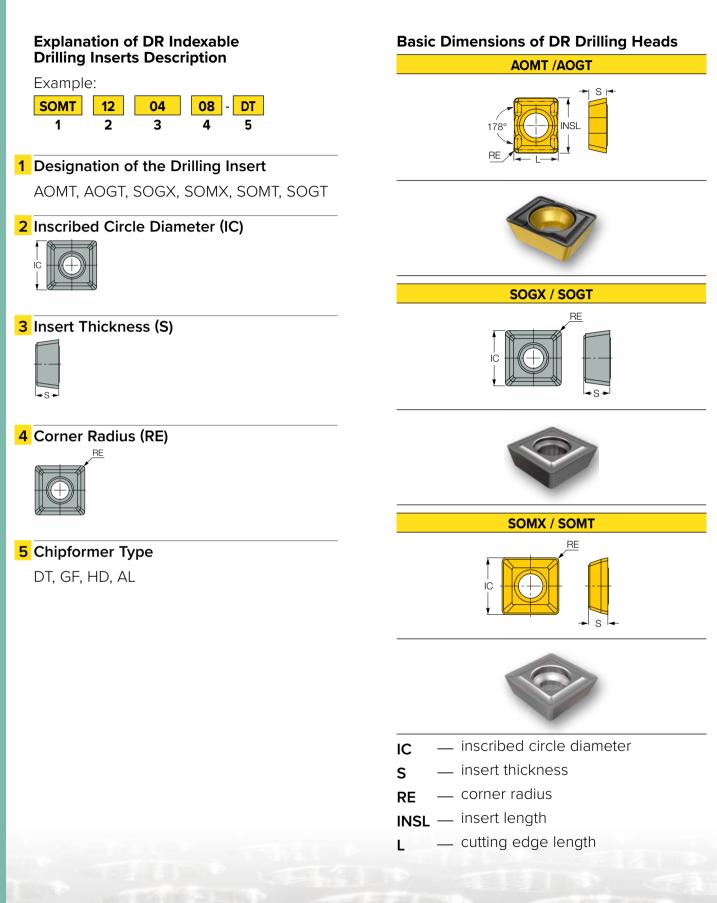


 DR-...-T was designed to bring solutions to typical problems that occur when using turning machines. They feature a shallow helix angle and reinforced body structure, which provides excellent tool performance and easy chip evacuation on lathe applications.

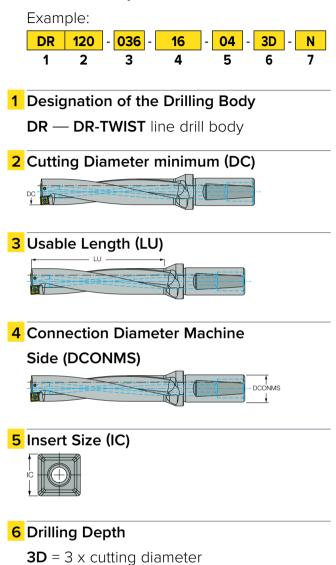
 FDR-...-CA-N allows drilling large diameter holes of 57 to 80 mm (2.24 to 3.15 inches). This drill body carries cartridges with square inserts. Each drill is supplied with a set of shim plates. By mounting these plates, the drill's diameter can be changed. The combination of each drill body's shim plate and cartridge defines a specific drill diameter (hole sizes).


cartridge clamping screw and washer

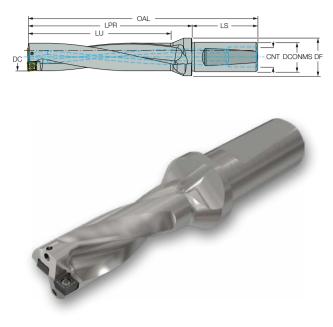
drill body


internal cartridge shim plate

external cartridge



shim plate


Explanation of DR Drilling Bodies Description

7 Application Designation

- **N** for general applications
- T for turning machines
- **CA** for general applications, large diameter, with cartridges

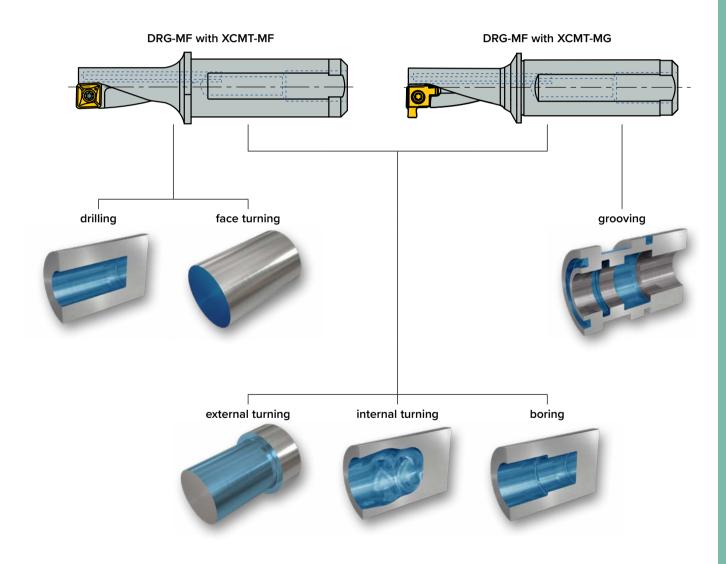
Basic Dimensions of DR Drilling Bodies

DC		cutting diameter minimum
DCX		cutting diameter maximum
DCONMS	—	connection diameter
		machine side
DF	—	flange diameter
LU	—	usable length
LPR	—	protruding length
LS		shank length
OAL		overall length

MULTI-FUNCTION TOOLS

ISCAR MULTI-FUNCTION TOOLS is a line of versatile tools that meet the global trend of "complete machining" in CNC machining centers. This line of **MULTI-FUNCTION TOOLS** consists of tools with the designation DRG-MF carrying indexable inserts for various metal cutting operations. A single multifunction tool can be used for drilling, boring, internal turning, external turning, face turning, and grooving.

By using these tools, the production cycle time and the number of tools being used can be reduced.


Multifunction tools – DRG-MF

The main use of multifunctional tools is aimed at Swiss-Type machines, miniature parts, automotive parts, dies and molds, aviation and aerospace, medical and general engineering applications.

Indexable Multifunction Inserts

A single DRG-MF tool carries two types of multifunction inserts, XCMT-MF and XCMT-MG for external turning, internal turning, and boring. Both types of indexable inserts have two cutting edges and are made from grade IC908, a submicron substrate TiAIN multilayer coating to optimally cover various machining operations and materials. The tool with an XCMT-MF insert can also perform drilling and face turning operations. The cutting edge of indexable inserts XCMT-MF is designed with high helix to minimize cutting forces. The tool with an XCMT-MG insert is also intended for grooving operations.

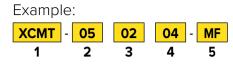
Drill Body

The multifunction tools are designed with diameter ranges of 8 to 32 millimeters (0.315 to 1.26 inch diameters) with usable machining length of 2.25D.

The DRG-MF tools are hard touch coated. This coating provides improved wear resistance due to its 60 HRc hardness and reduces surface friction coefficient on the drill flutes that facilitates chip evacuation. The rear side of the tool shank has a threaded hole to allow f a cooling hose connection directly to the tool by a hose fitting.

DRG-MF with XCMT-MF

DRG-MF with XCMT-MG


Clamping Pocket

The orientation of the insert is determined by the sides of the clamping pocket, while a patented crescent-shaped protrusion near the insert's threaded clamping hole improves clamping rigidity. The protrusion in the pocket enters into a circular cavity around the insert clamping hole. (Indicated in blue).

A high quality torx plus head screw is used to clamp the insert. The Torx Plus head delivers higher clamping torque, providing a more secure clamp, especially on the small screws. In addition, it also extends screwdriver life.

Explanation of Multifunction Indexable Inserts Description

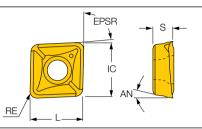
1 Insert Designation

XCMT — designation according to ISO system for indexable inserts (ISO 1832)

2 Inscribed Circle Diameter (IC)

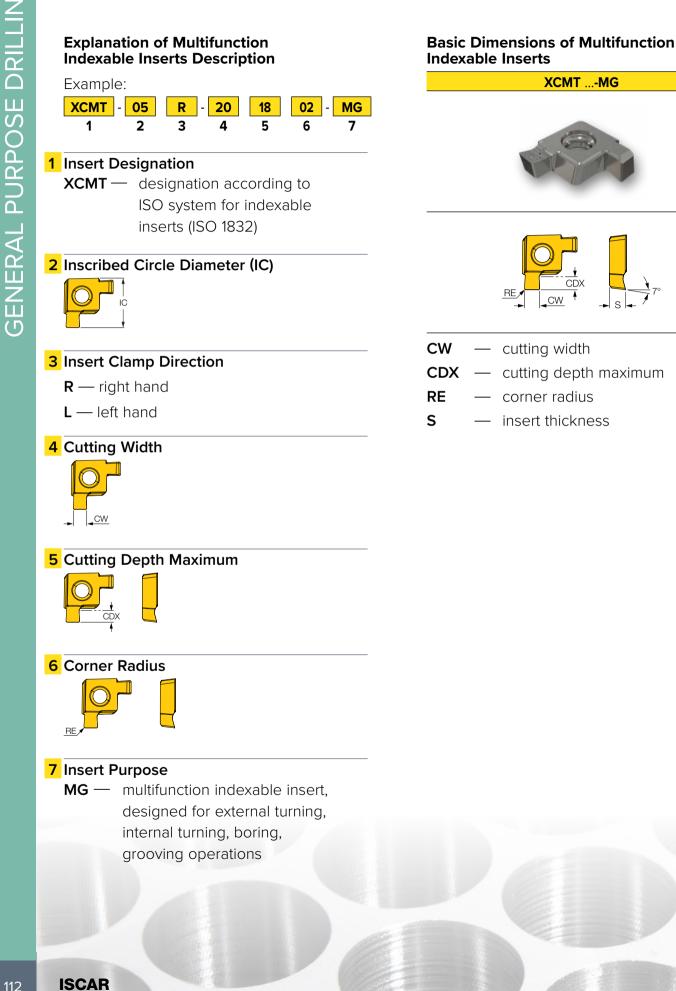
3 Insert Thickness (S)

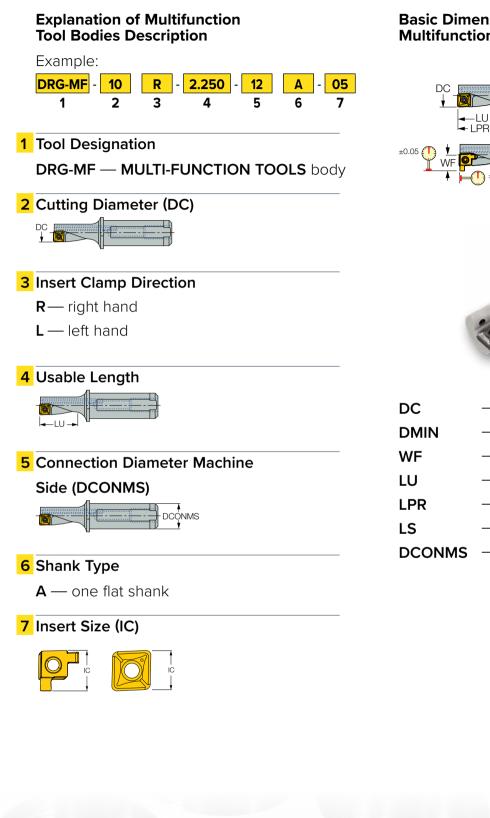
4 Corner Radius

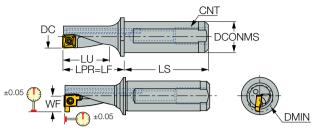

5 Insert Purpose

MF — multifunction indexable insert, designed for external turning, internal turning, boring, drilling and face turning operations

Basic Dimensions of Multifunction Indexable Inserts






r

- EPSR insert included angle RE — corner radius
- L cutting edge length
- **S** insert thickness
- AN clearance angle major

Basic Dimensions of Multifunction Tool Bodies

DC	_	cutting diameter
DMIN	—	minimum bore diameter
WF	—	functional length
LU	—	usable length
LPR	—	protruding length
LS	—	shank length
DCONMS	—	connection diameter
		machine side

Indexable Insert Drills Cutting Conditions

DR-TWIST

								Feed vs. Drill Diameter mm/rev						
ISO	Material	Condition	Tensile Strength [N/mm ²]		Material Group No.	Cutting V _c m/min IC808/ 908 external	Speed ⁽¹⁾ V _c m/min IC8080 /9080 external	DR-04 AL/DT/HD	DR-05 GF/DT/AL/HD	DR-06 GF/DT/AL/HD	DR-07 GF/DT/AL/HD	DR-09/10 GF/DT/AL/HD	DR-11/12 GF/DT/AL/HD	DR-14/16 GF/DT/AL/HD
	<0.25% C	annealed annealed	420 650	125 190	1	200-300	260-390		0.06-	0.07-	0.08-	0.10-	0.12-	0.14-
	non-alloy ≥0.25% C	quenched and							0.10	0.12 0.10-	0.12 0.12-	0.15 0.14-	<mark>0.16</mark> 0.15-	0.17 0.16-
	steel and cast	tempered	850	250	3				0.15	0.16	0.18	0.22	0.25	0.26
	steel, free cutting steel ≥0.55% C	annealed	750	220	4	150-200	190-260		0.04- 0.08	0.04- 0.08	0.05- 0.10	0.05- 0.10	0.08- 0.15	0.08- 0.15
	20.00%€	quenched and	1000	300	5				0.06-	0.07-	0.08-	0.10-	0.12-	0.14-
		tempered annealed	600	200	6	150-220	190-290		0.10	0.12 0.10-	0.12 0.10-	0.14 0.14-	0.15 0.14-	0.16 0.15-
	low alloy and cast		930	275	7	150 220	130-230	0.04-	0.10-	0.10-	0.10-	0.20	0.22	0.13-
Б	steel (less than 5% of alloying elements)	quenched and tempered	1000	300	8	120-180	160-230	0.08	0.04-	0.04-	0.05-	0.05-	0.08-	0.08-
Ρ	alloying elements)		1200	350	9			0.02-	0.08	0.08	0.10	0.10	0.15	0.15
		annealed	680	200	10	120-190	160-250	0.06	0.06-	0.06-	0.06-	0.08-	0.10-	0.14-
	high alloyed steel, cast								0.10	0.10 0.10-	0.10 0.10-	0.12 0.12-	0.15 0.14-	0.17 0.16-
	steel and tool steel	quenched and	1100	325	11	100-160	210-310		0.10	0.10	0.10	0.12	0.20	0.24
		tempered							0.08-	0.08-	0.08-	0.096-	0.112-	0.128-
-		• • • • •							0.112	0.112	0.112	0.144	0.160	0.192
	atalalana ata al	ferritic / martensitic	680	200	12	160-240			0.06-	0.06-	0.06-	0.08-	0.10- 0.14	0.12- 0.20
	stainless steel and cast steel	martensitic	820	240	13		210-310		0.10 0.048-	0.10 0.048-	0.12 0.048-	0.12 0.064-	0.08-	0.20
									0.040	0.040	0.096	0.096	0.00	0.160
м	stainless steel	austenitic, duplex	600	180	14	160-240	210-310	0.04-	0.06-	0.06-	0.06-	0.08-	0.10-	0.12-
	and cast steel		000			100-240	210-310	0.08	0.10	0.10	0.12	0.12	0.14	0.20
	gray cast iron (GG)	ferritic / pearlitic pearlitic / martensitic		180 260	15 16	150-250	190-320			0.10- 0.22	0.10- 0.22	0.15- 0.25	0.18-	0.20-
.,		ferritic		160	17			0.08-						
K	nodular cast iron (GGG)	pearlitic		250	18	120-180	160-230	0.16					0.30	0.34
	malleable cast iron	ferritic		130	19	120-100	100-230							
		pearlitic not hardenable		230 60	<u>20</u> 21									
	aluminum-wrought alloys	hardenable		100	22									
	aluminum- ≤12% Si	not hardenable		75	23									
	anat allavia	hardenable		90	24									
	Cast alloys >12% Si >1% Pb	high temperature free cutting		130 110	25 26			0.08-	0.12-	0.12-	0.12-	0.20-	0.2-	0.28-
Ν	copper alloys	brass		90	27	150-300	190-390	0.24	0.25	0.25	0.25	0.30	0.35	0.45
		electrolytic copper		100	28									
		duroplastics,		70	29									
	non metallic	fiber plastics		Shore D 55										
		hard rubber		Shore D	30									
	Fe based	annealed		200	31									
	nign	hardened annealed		280 250	32	20 50	30-60							
	alloys Ni or Co	hardened		350	33 34	20-50	30-60	0.03-	0.04-	0.04-	0.05-	0.07-	0.08-	0.10-
S	based	cast		320	35			0.03-	0.04-	0.04-	0.03-	0.07-	0.00-	0.10-
		pure	400	190	36									
	titanium alloys	alpha+beta alloys, hardened	1050	310	37	50-60	60-80							
		hardened		55 HRC	38									
	hardened steel	hardened		60 HRC	39	20-50	30-60	0.04-	0.05-	0.05-	0.06-	0.07-	0.08-	0.10-
Ш	chilled cast iron	cast		400	40				0.08	0.08	0.09	0.10	0.12	0.14
h and	cast iron	hardened		55 HRC	41					0.00	0.00	0.10	0.12	0.11

- This table refers to 2/3xD drill ratio usage. \cdot For 4xD ratio decrease cutting data by 15%

Chipformer should be selected based on our geometry range recommendations

When using external coolant supply only, reduce cutting speed by 10%
 Use internal coolant supply when machining austenitic stainless steel
 This table refers to 2/3xD drill lengths.

This lable refers to 2/3xD unit lengths.
 Far 4vD and EXD drille degrades outting

For 4xD and 5XD drills, decrease cutting data by 15%

• When using only external coolant supply, reduce cutting speed by 10% • Use internal coolant supply when machining austenitic stainless steel • Central insert should always be IC808/IC908

DR-DH

ISO	Material		Condition	Tensile Strength Rm [N/mm ²]	Hardness HB	Mtl. No.	Cutting Speed vc m/min	Feed mm/rev
		<0.25% C	annealed	420	125	1	100-150	0.10-0.25
	non-alloy steel	≥0.25% C	annealed	650	190	2	100-150	0.10-0.25
	and cast steel,	<0.55% C	quenched and tempered	850	250	3		0.15-0.30
	free cutting steel		annealed	750	220	4	00 150	0.15-0.30
		≥0.55% C	quenched and tempered	1000	300	5	80-150	0.15-0.30
Ρ			annealed	600	200	6		0.15-0.30
	low alloy and cast steel (less than 5% of alloying elements)		steel		275	7		0.15-0.30
			quenched and tempered	1000	300	8	70-120	0.15-0.30
	anoying cicinentar			1200	350	9		0.15-0.30
	high alloyed steel, cast		annealed	680	200	10	80-150	0.10-0.25
	steel and tool steel		quenched and tempered	1100	325	11	70-120	0.10-0.25
			ferritic / pearlitic		180	15	100.200	0.18-0.35
	gray cast iron (GG)		pearlitic / martensitic		260	16	180-300	0.18-0.35
		\ \	ferritic		160	17		0.15-0.30
ĸ	nodular cast iron (GGG)	pearlitic		250	18	150.250	0.15-0.30
			ferritic		130	19	150-250	0.15-0.35
	malleable cast iron		pearlitic		230	20		0.15-0.35

MULTI-FUNCTION TOOLS

	Cutting speed (V _c)								
_				Cutting speed: V _c	(m/min) for IC908				
ISO	Workpiece Materials	Material No. VDI 3323	Hardness (BHN)	Drilling	Turning & Boring				
	low carbon steel (<0.25% C)	1	~150	130-240	150-270				
	carbon steel (≥0.25% C)	2	150-250	90-160	100-180				
D	low alloy steel	6	~180	120-210	140-230				
P	medium alloy steel	7	200-250	70-140	80-160				
	high alloy steel	8, 9	250-350	50-100	60-120				
	martensitic stainless steel	12	200	110-180	130-200				
Μ	austenitic stainless steel	14	200	90-160	100-180				
	grey cast iron	17, 18	180-220	110-180	120-200				
K	ductile cast iron	15, 16	200-240	90-160	100-180				
N	aluminum alloy	21-24	60-130	100-500	150-600				
IN	copper alloy	26-28	90-100	100-400	100-500				

Recommended Cutting Conditions

		Cutting Co		
Insert	Machining Type	a _p (mm)	a _e (mm)	f (mm/rev)
XCMT 040104R/L -MF	turning and boring	0.6 (0.2-1.8)		0.05 (0.02-0.15)
	drilling	-		0.06 (0.02-0.10)
	turning and boring	0.8 (0.2-2.5)		0.08 (0.02-0.15)
XCMT 050204-MF	face turning	0.6 (0.2-1.7)		0.06 (0.02-0.13)
	drilling	-		0.05 (0.02-0.10)
	turning and boring	1.0 (0.2-3.0)		0.10 (0.03-0.20)
XCMT 060204-MF	face turning	0.8 (0.2-2.5)		0.07 (0.03-0.15)
	drilling	-		0.05 (0.02-0.10)
	turning and boring	1.3 (0.3-3.5)		0.12 (0.03-0.20)
XCMT 070304-MF	face turning	1.0 (0.25-3.0)		0.10 (0.03-0.18)
	drilling	-		0.06 (0.03-0.12)
	turning and boring	1.2 (0.3-3.5)		0.12 (0.06-0.24)
XCMT 08034-MF	face turning	1.5 (0.35-4.0)		0.14 (0.06-0.25)
	drilling	-		0.08 (0.05-0.16)
	turning and boring	1.8 (0.5-3.5)		0.12 (0.06-0.30)
XCMT 10T304 -MF	face turning	1.8 (0.5-3.5)		0.12 (0.06-0.30)
	drilling	-		0.08 (0.03-0.15)
	turning and boring	1.8 (0.5-3.5)		0.20 (0.10-0.40)
XCMT 10T308 -MF	face turning	1.8 (0.5-3.5)		0.20 (0.10-0.40)
	drilling	-		0.08 (0.03-0.15)
	turning and boring	2.0 (0.6-4.3)		0.15 (0.07-0.32)
XCMT 130404 -MF	face turning	2.0 (0.6-4.3)		0.15 (0.07-0.32)
	drilling	-		0.08 (0.03-0.15)
	turning and boring	2.0 (0.6-4.3)		0.20 (0.10-0.40)
XCMT 130408 -MF	face turning	2.0 (0.6-4.3)		0.20 (0.10-0.40)
	drilling	-		0.08 (0.03-0.15)
	turning and boring	3.0 (0.7-5.3)		0.22 (0.10-0.40)
XCMT 170508 -MF	face turning	3.0 (0.7-5.3)		0.22 (0.10-0.40)
	drilling	-		0.08 (0.03-0.15)
XCMT 05R-201802-MG	turning and boring	1.8	2.0	0.05-0.1
	grooving			0.04-0.07
XCMT 06R-202002-MG	turning and boring	2.0	2.0	0.05-0.1
	grooving			0.04-0.07
XCMT 07R-252002-MG	turning and boring	2.0	2.5	0.07-0.12
XCIVIT U/R-252002-IVIG	grooving			0.05-0.1
VONT OOD DEDEAD MO	turning and boring	2.5	2.5	0.07-0.12
XCMT 08R-252502-MG	grooving			0.05-0.1
VCMT 400 202002 MC	turning and boring	3.0	3.0	0.14-0.18
XCMT 10R-303003-MG	grooving			0.06-0.12
VONT 42D 252502 MC	turning and boring	3.5	3.5	0.14-0.2
XCMT 13R-353503-MG	grooving			0.07-0.14
VCMT 17D 404004 MC	turning and boring	4.0	4.0	0.15-0.21
XCMT 17R-404004-MG	grooving			0.08-0.15

Cutting parameters are for 2.25xD steel shank Internal coolant supply is recommended

ISCAR

Exchangeable Head Drills Troubleshooting

DR-TWIST

	Troubleshooting							
Chipping Along Cutting Edge	 Reduce entrance feed. Choose a tougher grade. Choose a geometry with open chip breaking for higher feeds. (SOMT, WOLH) Reduce feed.* Reduce cutting speed. Increase coolant pressure. 							
Machine Troubleshooting Vibrations	 Check mounting of drill. Check mounting of workpiece. Increase feed. If drilling a very soft material, reduce feed and increase speed.* Reduce cutting speed. 							
Chipping of Center Insert	 Check mounting of drill. Check mounting of workpiece. Reduce entrance feed. Reduce cutting speed. Check drill runout (should be 0.05 mm maximum). 							
Insufficient Torque	 Reduce feed.* Choose a geometry with a looser chipformer. 							
Excessive Flank Wear	 Reduce cutting speed. Increase coolant pressure/volume. Choose a better wear resistant grade. 							
Insufficient Power	 Reduce cutting speed. Reduce feed.* Choose a geometry with a looser chipformer. 							

			Travelasheating	 	
	Drills		Troubleshooting If surface slope exceeds 5°, reduce feed by 50% during penetration or when exiting. It is preferred to pre-face the surface to eliminate slope.		
	Irregular Conditions for DR Drills	1 2 3	Drilling into a pre-hole reduces feed to eliminate deflection ⁽¹⁾ of the drill body. Drilling an interrupted cut reduces feed during crossing to eliminate deflection ⁽¹⁾ of the drill body. Insufficient stability of workpiece requires additional support. Reduce feed. "Deflection may be observed by a mark on the drill body. Note: For irregular applications, use DR drills with XOMT inserts as a first priority.		
	Stacked Plates		Drilling operation is not recommended, but may be done by specially designed drills in 16-60 mm range. Apply standard cutting data. Note: For irregular applications, use DR drills with XOMT inserts as a first priority.		
- Troubleshooting DR Chips	Chip Jamming due to Long Chips	1 2 3	chipbreaker for lower feeds (GF).	₩IJ	ZZZ C
Indexable Insert Drills - T	ng Chips	1 2	Increase coolant pressure/volume. Reduce cutting speed.		<u>L</u>

	Troubleshooting								
	Rotating drill	Non-rotating drill							
Oversized holes Undersized holes	 Check that overlapping is correct between inner and outer inserts. Check inner insert over center. Increase coolant pressure. Change the insert chipbreaker. 	 Check misalignment. Check that overlapping is correct between inner and outer inserts. Check inner insert over center. Rotate drill 180 degrees. Increase coolant pressure. Change the insert chipbreaker. 							
Pin in hole	 Use shorter drill overhang (if possible). Reduce feed by 30-50%. Check that overlapping is correct 	 Check misalignment. Check that overlapping is correct between inner and outer inserts. 							
Vibrations	 between inner and outer inserts. 4 Check inner insert is positioned over center within its limits. 5 Increase coolant pressure. 6 Change the insert chipbreaker. 	 3 Check inner insert over center. 4 Rotate drill 180 degrees. 5 Increase coolant pressure. 6 Change the insert chipbreaker. 							
Cone Hole	 Use shorter drill overhang (if possible). Reduce feed by 30-50%. Check that overlapping is correct between inner and outer inserts. Check inner insert is positioned over center within its limits. Increase coolant pressure. Change the insert chipbreaker. 	 Check misalignment. Check that overlapping is correct between inner and outer inserts. Check inner insert is positioned over center within its limits. Rotate drill 180 degrees. Increase coolant pressure. Change the insert chipbreaker. 							
Bad Surface Finish	 Improve chip formation (change chipbreaker type or cutting condition). Increase coolant pressure. Increase speed and reduce feed. Stabilize clamping device. 	 Improve chip formation (change chipbreaker type or cutting condition). Increase coolant pressure. Increase speed and reduce feed. Stabilize clamping device. 							

MULTI-FUNCTION TOOLS

Troubleshooting						
Chipping caused by built-up edge	 Increase cutting speed. Reduce feed. Check tool and workpiece rigidity. Reduce tool and workpiece overhang. 					
Excessive flank wear	 Reduce cutting speed. Use a harder grade (special). Increase coolant flow. Check cutting edge height. 					
Edge deformation	 Reduce cutting speed. Use a harder grade (special). Increase coolant flow. Reduce feed. 					
Poor surface quality	 Reduce feed. Increase coolant flow. Check tool and workpiece rigidity. Increase cutting speed. 					
Long chips	 Increase feed. Reduce cutting speed. Increase coolant flow. 					
Tight chips	Reduce feed					
Vibrations	 Check tool and workpiece rigidity. Reduce tool and workpiece overhang. Reduce cutting speed. Increase feed. Check cutting edge height. Reduce feed and increase cutting speed on very soft materials. 					

Combo Drills Exchangeable Heads and Indexable Insert Drills

For large diameter drilling applications, the combination of exchangeable drilling heads and indexable drilling inserts is the ideal solution to boost productivity and efficiency, especially in machining deep holes. This truly effective drill enables high accuracy and excellent surface finish. Combo Drill tools are widely used in various industries, such as wind power, bearing, die mold, heat exchangers, oil and gas, power generation, etc. Especially for the wind power industry, the tools type Combo Drill provide an ultimate solution for drilling the most popular hole diameters in wind turbine parts such as blade bearings, tower flanges, yaw rings and planetary ring gears.

Planetary Ring Gear

Ring gears embrace the gearbox's planetary gears, allowing them to transform low incoming speed to high outgoing speed.

Blade Bearing

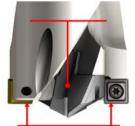
Adjusts the angle of the blades by rotating a bearing at the root of each blade. The blade bearing enables control of the power and slows the rotor. Made of bearing steel.

Yaw Ring

The yaw system of wind turbines is the component responsible for the orientation of the wind turbine rotor towards the wind. This is a mechanism that rotates the nacelle to face the changing wind direction. Made of alloy or bearing steel.

Tower Flange

The vast majority of commercial wind turbines use tubular steel towers. Tower heights depend on rotor diameter and wind speed conditions of the site. Their heights range from 50 meters for a 1 MW turbine to as high as 125 meters and more for very large turbines. The flange comprises a large scale of rolled steel which connects the tower's conical links.


COMBI-CHAM

ISCAR's **COMBI-CHAM** line is intended for semi-finish operations in machining deep holes with large diameters.

The **COMBI-CHAM** line is designed for machining holes with a metric diameter range of 26 to 50 mm in 1 mm increments and the 5, 7, 8 drill length to diameter ratios or with an imperial diameter range of 1.125 to 2 inches in 0.125 inch increments and the 3, 5 drill length to diameter ratios. Market demand has led to the expansion of the **COMBI-CHAM** line and drills have been developed to provide an ultimate solution for drilling the most popular hole diameters in the wind turbine industry. These drills feature an exchangeable pilot drilling head and indexable precision inserts in various sizes. The design of the drill creates two long cutting edges, i.e., the drill is truly fully effective, it enables high feed drilling, providing high drilling rates, and high accuracy and surface finish.

exchangeable pilot drilling head

indexable peripheral insert

true fully effective geometry

Exchangeable Pilot Drilling Heads

The **COMBI-CHAM** line drills carry **SUMO-CHAM** line exchangeable pilot drilling heads. These drilling heads have precision self-centering geometry, no need for pre-hole for the 5XD drilling depth to diameter ratio, provides high penetration rates, improves the stability of the tool which influences overall hole quality.

Indexable Peripheral Drilling Inserts

The **COMBI-CHAM** line includes two various drill designs that differ from each other in the type of peripheral indexable inserts. Inserts with designations SOGX ...-W and SOGT ...-W have a square shape with 4 cutting edges. SOGX ...-W and SOGT ...-W peripheral indexable inserts are made of IC808 grade, a tough, submicron substrate with excellent chipping resistance, combined with a "SUMO TEC" PVD coating that provides high wear resistance and is recommended for a very wide range of materials.

ground inserts with a wiper and 4 cutting edges SOGX ...-W

Inserts with designations WCGX ...-W have a trigon shape with 3 cutting edges.

WCGX ...-W peripheral indexable inserts are made of IC918 grade, a tough submicron grain size substrate with a multilayer PVD coating, recommended for general use for diverse operations on materials such as steels, alloy steels, austenitic stainless steel, and high temperature alloys at a wide range of cutting speeds. Features high wear resistance and chipping durability.

ground inserts with a wiper and 3 cutting edges WCGX ...-W

All peripheral indexable inserts in the **COMBI-CHAM** line are designed with wiper geometry to provide high quality surface finish while DT chipformer ensures good chip control at medium and high feed rates. The drills of the **COMBI-CHAM** line, in combination with SOGX ...-W or SOGT ...-W peripheral indexable inserts, are mainly intended for drilling large-diameter holes at shallow depths and with short tool overhangs on stable machines. The **COMBI-CHAM** drills in combination with the WCGX ...-W peripheral indexable inserts were designed for a wide range of machining large diameter holes and offer a clear advantage in the following cases:

- large diameter deep hole drilling
- drilling large diameter holes
 with long tool overhang
- drilling large diameter holes on unstable machines
- stack drilling large diameter holes
- combination of the above cases

Drill Body

The **COMBI-CHAM** drill body designated MNC ... is made of steel, which was specially developed for drilling tools. The drill body features two polished flutes with variable flute geometry for optimal chip evacuation.

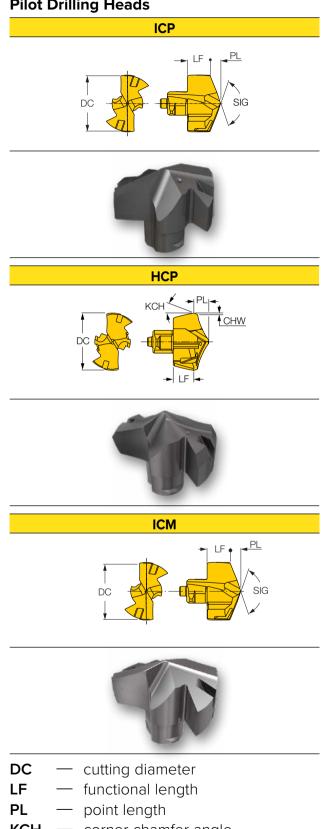
Two peripheral coolant nozzles provide high coolant flow directly to cutting zone and are also suitable for MQL coolant types. The shank complies with ISO 9266 standard.

Explanation of SUMO-CHAM Pilot Drilling Heads Description

Example:					
ICP	225	IC908			
1	2	3			

1 Designation of the Drilling Head

- ICP exchangeable drilling heads for ISO P materials
- HCP exchangeable drilling heads for ISO P and ISO K materials
- ICM exchangeable drilling heads for ISO M materials



3 Grade

IC908

ISCAR

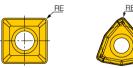
Basic Dimensions of SUMO-CHAM Pilot Drilling Heads

- **KCH** corner chamfer angle
- CHW corner chamfer width
- **SIG** point angle

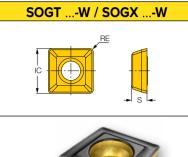
Explanation of COMBI-CHAM Indexable Peripheral Drilling Inserts Description

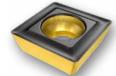
1 Designation of the Drilling Insert

- **SOGT** indexable peripheral insert for tools over 32 mm diameter
- **SOGX** indexable peripheral insert for tools up to 32 mm diameter
- WCGX trigon indexable peripheral insert

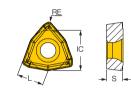

2 Inscribed Circle Diameter (IC)

3 Insert Thickness (S)


4 Corner Radius (RE)



<mark>5</mark> W - Wiper


6 Grade IC808; IC918

Basic Dimensions of COMBI-CHAM Indexable Peripheral Drilling Inserts

WCGX ...

- IC inscribed circle diameter
- **RE** corner radius
- **S** insert thickness

Explanation of COMBI-CHAM Drilling Body Description Example: MNC 400 - 200 Α 40 - 225 10 -_ 1 2 3 4 5 6 7 **1** Designation of the Drilling Body MNC — COMBI-CHAM drill body 2 Cutting Diameter minimum (DC) DC

3 Usable Length (LU)

4 Shank Type

A — one flat shank

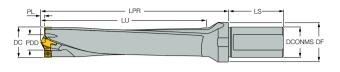
5 Connection Diameter Machine

Side (DCONMS)

6 Pilot Drill Diameter

7 Insert Inscribed Circle Diameter (IC)

8 Drilling Depth


ISCAR

 $5D = 5 \times cutting diameter$

Basic Dimensions of the COMBI-CHAM Drilling Body

5D

8

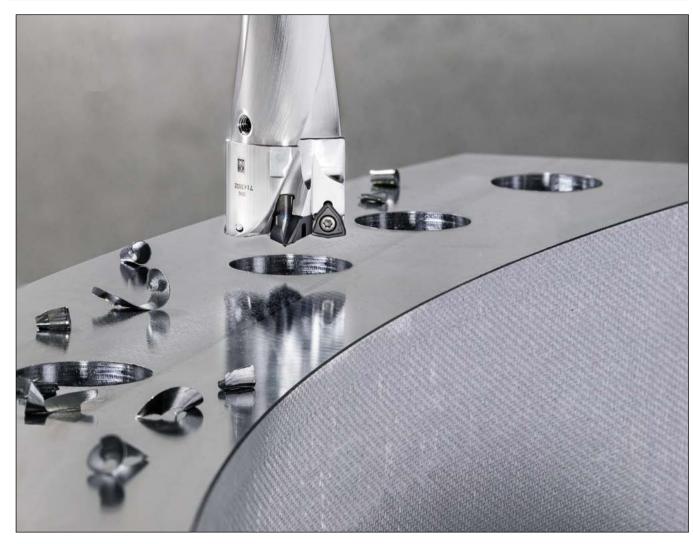
DC –	С	utting diameter
PDD -	р	ilot drill diameter
DCONMS -	С	onnection diameter
	n	nachine side
DF –	fl	ange diameter
LU –	u	sable length
LPR –	р	protruding length
PL –	р	oint length
LS –	S	hank length



Combo Drills Exchangeable Heads and Indexable Insert Drills Cutting Conditions

COMBI-CHAM

									Feed vs. Drill Diameter F [mm/rev]										
				_		è.	Cutting		D <28		Ş	ç	Ļ	00	ç	5 4 /	C L	ç,	
				Strength]	~	Group No.								ě			2		
				lien	뽀	0.5	Speed V _c		Č,	2	Č,	ג י	Č	2	Č,	ב ג	Č V	Ā V	
				n ² G	less	ial		[m/min]		26< ØD		29<		33		36< ØD -		44< ØD	
ISO	Mater	ial	Condition	Tensile S [N/mm ²]	Lensue Strenç [N/mm ²] Hardness HB		V _c V _c min _{max}		f min	f _{max}	f min	f _{max}	f min	f _{max}	f min	f _{max}	f min	f _{max}	
		<0.25% C	annealed	420	125	1	120												
	non-alloy <u>≥0.25% C</u> steel and cast steel, <0.55% C	≥0.25% C	annealed	650	190	2	120	200											
		quenched and tempered	850	250	3		(0.25	0.35	0.25	0.35	0.25	0.40	0.25	0.40	0.28	0.45		
	free cutting		annealed	750	220	4	-	190											
	steel	≥0.55% C	quenched and tempered	1000	300	5													
	low alloy and	cast	annealed	600	200	6													
Ρ	steel (less tha		quenched and	930	275	7	120	180	0.25	0.33	0.25	0.33	0.25	0.38	0.25	0.38	0.26	0.43	
	alloying elem		tempered	1000	300	8													
				1200	350	9 10													
	high alloyed	steel, cast	annealed	680	200	10	100	160	0.25	0 22	0.25	0.22	0.25	0.26	0.25	0.36	0.26	0.41	
	steel and too	l steel	quenched and tempered	1100	325	11	100	160	0.25	0.55	0.25	0.55	0.25	0.30	0.25	0.30	0.26	0.41	
	stainless stee	el	ferritic / martensitic	680	200	12	90	140	0.12	0.24	0.12	0.24	0.16	0.25	0.18	0.25	0.18	0.30	
	and cast stee	el	martensitic	820	240	13	. 30	140	0.12	0.24	0.12	0.24	0.10	0.25				0.50	
M	stainless stee and cast stee		austenitic, duplex	600	180	14	90	140	0.12	0.24	0.12	0.24	0.16	0.25	0.18	0.25	0.18	0.30	
		ferritic / pearlitic		180	15	16 17 150	250 0.							0.3	0.50	0.35	0.55		
	gray cast iron (GG)		pearlitic / martensitic		260			16	0.25	0.40	0.25 0.4								
Κ	nodular cast iron (GGG)		ferritic		160			17				0.45	.45 0.3					0.50	
			peantic		250	18	3												
	malleable cast iron		ferritic		130	19	_												
			pearlitic		230	20													
	aluminum-		not hardenable		60	21													
	wrought alloy	/S	hardenable		100	22							0.35	0.55				0.60	
	aluminum-	≤12% Si	not hardenable		75	23													
	cast allovs	× 400/ C:	hardenable		90	24	100	200	0.0	0.50	0.3	0 50			0.05	~ F F	0.4		
		>12% Si	high temperature		130	25	160	260	0.3			0.50			0.35	0.55	0.4		
Ν		>1% Pb	free cutting		110 90	26 27													
	copper alloys		brass electrolytic																
			copper duroplastics,		100	28													
			fiber plastics,		70 Shore D	29													
	non metallic				55														
			hard rubber		Shore D	30													
		Fo becad	annealed		200	31	30	60											
	high	Fe based	hardened		280	32													
	temperature	Ni or Co	annealed		250	33													
s	alloys	based	hardened		350	34			0.1	0.16	0.1	0.18	015	0.20	015	0.22	0.16	0.24	
		Sabea	cast		320	35	20	50	0.1	0.10	0.1	0.10	0.15	0.20	0.15	0.22	0.10	0.27	
	titanium alloys		pure	400	190	36													
			alpha+beta alloys, hardened	1050	310	37													
	hardened ste	el	hardened			38	20	50	0.1	0.16	0.12	0.18	0.14	0.2	0.14	0.2	0.16	0.22	
н			hardened			39													
	chilled cast ir	on	cast		400	40													
	cast iron		hardened		55 HRC	41													


Modular Exchangeable Drilling Heads

Some good things can be made even better. Much better. This is how the idea of creating a modular drill system was born. The modular drill system expands the possibilities for machining large diameter deep holes or drilling large diameter holes with overhang. The design of the modular drill system is very simple and easy to handle. The drill body can carry a variety of drill heads with indexable inserts or exchangeable drilling heads for different hole requirements, also by using extensions a drill of the required length can be assembled.In other words, the main goal of using modular drill system is versatility in machining large diameter holes. This system significantly reduces costs and simplifies technological processes.

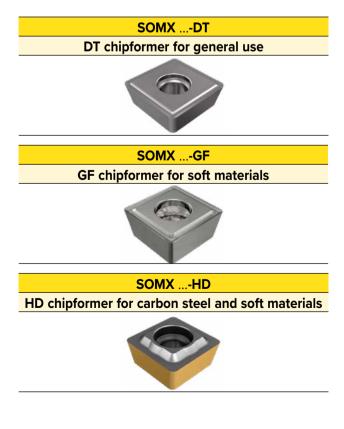
MODU-DRILL

ISCAR's **MODU-DRILL** line expands the possibilities of drilling large diameter holes and features three different types of exchangeable heads that can be mounted on same drilling tool body. In other words, each drill body can carry any one of the three head types. The three available drilling heads covering a metric diameter range of 33 to 40 mm (imperial diameter range of 1.299 to 1.575 inches) but were designed for different applications - cutting conditions, required hole accuracy and surface finish.

ISCAR's MODU-DRILL line provides a significant increase in drilling depth. The usable length of the drill body belonging to the MODUDRIL line is 400 mm (15.748 inches). But this is not the limit, with an extension of which the length is 200 mm (7.874 inches), the drill body of the **MODU-DRILL** line can exceed 600 mm (23.622 inches).

When using the MD-EXTENSION, a short pre-hole of at least 1XD deep (minimum) with H8 hole tolerance MUST be prepared to guide the long drill (an endmill can be used) for all drilling head types.

The exchangeable drilling heads of **MODU-DRILL** line are designated MD-DFN ... HEAD, MD-DR-DH ... and MD-MNC The MD-DFN ... HEAD carry CHAMIQDRILL line exchangeable solid carbide heads where HFP ... IQ is intended for machining ISO P, ISO K materials while IFP ... IQ is intended for machining ISO P, ISO M, and ISO S materials. Robust structure with concave cutting edge design enables drilling at high feed rates, providing very accurate IT8-IT9 hole tolerance. The unique pocket design enables many drilling head indexes. Special axial stoppers prevent the drilling head from being extracted during retraction. Large radial head stoppers provide high resistance to cutting forces, enabling very high cutting conditions.


The MD-DR-DH ... carry standard SOMX indexable inserts with 4 cutting edges. providing an economical solution. A wide range of grades and chipformers SOMX inserts provide a solution for machining holes in a variety of materials. It is a known and proven design combined with the advantages of a modular system. Double-ended guide pads ensure the straightness of the bore and improve surface quality. When using MD-DR-DH ..., it is necessary to pre-drill flat bottom hole of 1XD minimum depth with a tolerance of H8. Used correctly, this drill head stands out with excellent straightness and surface finish. Recommended for low to medium feed machining.

The MD-MNC modular head is designed for machining ISO P and ISO K materials, equipped with a pilot exchangeable **SUMO-CHAM** drilling head (designated as ICP ...-MNC) and peripheral indexable inserts (designated as WCGX ...-W). This modular head allows for drilling without the need for a pre-hole, achieving a depth-todiameter ratio of up to 8xD. The MD-MNC combines cost efficiency with high precision, ensuring accuracy, cylindricity, roundness, and straightness of the machined hole. Recommended for medium to high feed machining.

Peripheral indexable inserts WCGX ...-W

Drill Body and Exchangeable Extension

The **MODU-DRILL** line uses only two drill bodies to cover the full range: one for 33-36 mm (1.299-1.453 inches) and the other for 37-40 mm (1.457-1.575 inches). These drill bodies have a length of 400 mm (15.748 inches) that can increase an additional 200 mm (7.874 inches) with an exchangeable extension.

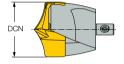
The **MODU-DRILL** drill body designated MD-BODY-... and the **MODU-DRILL** extension designate MD-EXTENSION-... are made of high strength steel for high durability. The distinguishing feature of the MD-BODY-... and the MD-EXTENSION-... design is a small core with a central coolant hole, combined with a high flute helix and polished surface that ensures smooth and easy chip evacuation.

The patented connection withstands high torque. The shank complies with ISO 9266 standard.

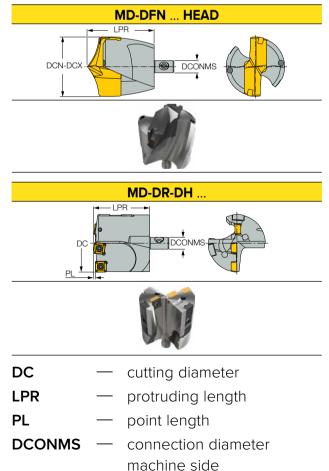
Explanation of MODU-DRILL Exchangeable Drill Head Description

Example:

MD-DFN	350	HEAD
1	2	


1 Designation of the Drilling Head

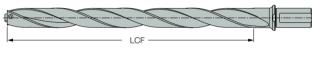
MD-DFN ... HEAD


carry SPADE-CHAM
 line exchangeable
 solid carbide heads

MD-DR-DH ... — carry standard SOMX indexable inserts with 4 cutting edges

2 Cutting Diameter minimum (DCN)

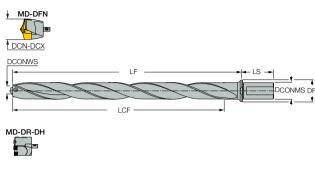
Basic Dimensions of MODU-DRILL Exchangeable Drilling Heads



Drilling Body Description Example: 33-36 **MD-BODY** 400 32 Α 1 2 3 4 5 1 Designation of the Drilling Body MD-BODY — MODU-DRILL drill body 2 Cutting Diameter Drilling Head Range (DC) DCN

Explanation of MODU-DRILL

3 Usable Length (LCF)


4 Connection Diameter Machine

Side (DCONMS)

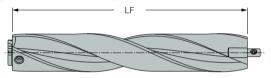
5 Shank Type

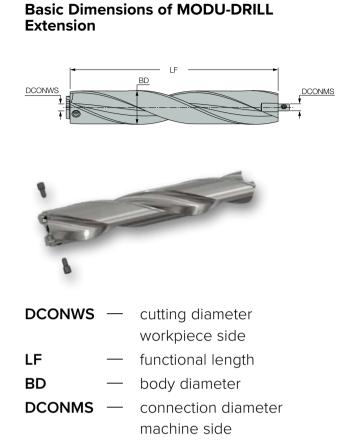
A — one flat shank

Basic Dimensions of MODU-DRILL Drilling Body

DCONWS		cutting diameter
		workpiece side
DF	—	flange diameter
LS	—	shank length
LF		functional length
LCF	—	length chip flute
DCN-DCX	—	cutting diameter
		drilling head range
DCONMS	—	connection diameter
		machine side

Explanation of MODU-DRILL Extension Description


Example: MD-EXTENSION 33-36 400 1 2 3


1 Designation of the Drilling Body MD-EXTENSION — MODU-DRILL extension

2 Cutting Diameter Drilling Head Range (DC)

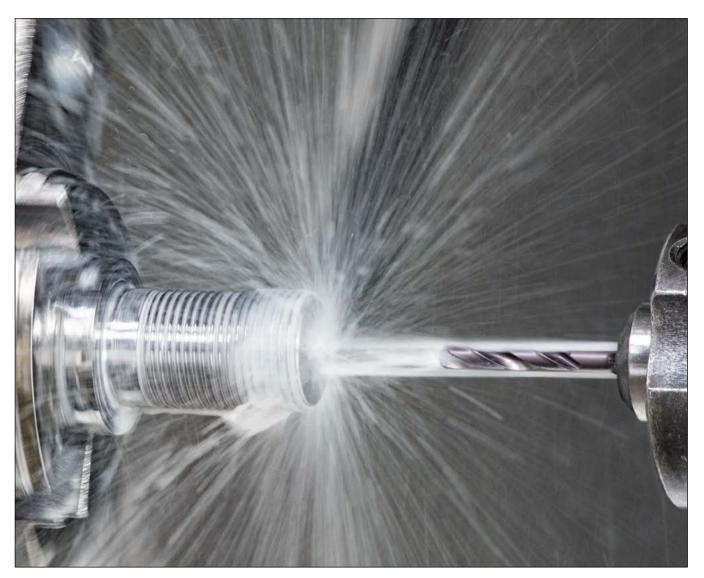
3 Functional Length (LF)

Modular Exchangeable Drilling Heads Cutting Conditions

Modudrill – Exchangeable Head MD-DFN ...

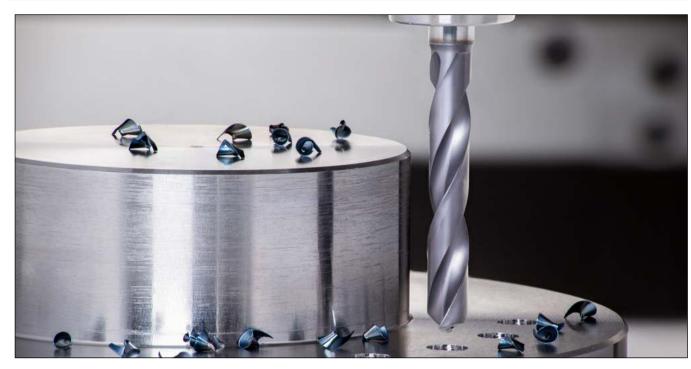
				Tensile	Hardness HB	al No.		Feed Vs. Drill Diameter	
~	<u>ල</u> Material			Strength Rm	rdn	Material		33<ØD<40 (mm)	
S			Condition	[N/mm ²]	면 면 면	Ma	V _c [m/min]	f [mm/rev]	
		<0.25% C	annealed	420	125	1	80-110-140		
	non-alloy steel	≥0.25% C	annealed	650	190	2	90-105-130		
	and cast steel,	<0.55% C	quenched and tempered	850	250	3	80-100-120	0.30 0.40 0.50	
	free cutting steel		annealed	750	220	4	70-90-110		
		≥0.55% C	quenched and tempered	1000	300	5	50-70-90		
Ρ	low alloy and cast steel (less than 5% of alloying elements)		annealed	600	200	6	80-100-120		
				930	275	7	70-90-110	0.30 0.40 0.50	
			quenched and tempered	1000	300	8	50-70-90	0.30 0.40 0.50	
				1200	350	9	40-55-70		
	high alloyed steel, ca	ist	annealed	680	200	10	50-70-90		
	steel and tool steel		quenched and tempered	1100	325	11	40-60-80	0.25 0.30 0.35	
	gray cast iron (GG)		ferritic / pearlitic		180	15	90-125-160		
			pearlitic / martensitic		260	16	80-110-140		
	nodular cast iron (CC	<u> </u>	ferritic		160	17	90-135-180	0.40 0.50 0.60	
K	nodular cast iron (GGG)		pearlitic		250	18	80-110-140	0.40 0.50 0.60	
	mellechle east iven		ferritic		130	19	90-125-160]	
	malleable cast iron		pearlitic		230	20	80-110-140		

*Reduce speed by 50% when using the MD-Extension

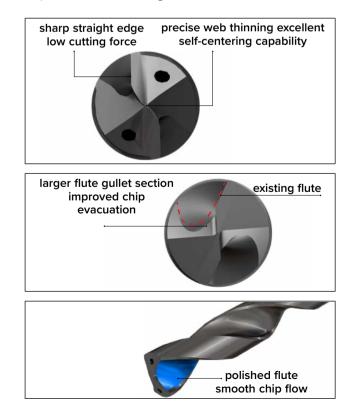

*The MD-Extension is recommended for machining ISO K materials only

Modudrill – Exchangeable Head MD-DR-DH ...

				Tensile	Hardness HB	ial No.		Feed Vs. Drill Diameter
0				Strength Rm	ardn 2	Material	Vc	33<ØD<40 (mm)
ISO	Material		Condition	[N/mm ²]	Ϋ́́Ξ	Ĕ	[m/min]	f [mm/rev]
		<0.25% C	annealed	420	125	1	100-150	0.10-0.25
	non-alloy steel	≥0.25% C	annealed	650	190	2	100-150	0.10-0.25
	and cast steel,	<0.55% C	quenched and tempered	850	250	3		
	free cutting steel		annealed	750	220	4	80-150	0.15-0.30
		≥0.55% C	quenched and tempered	1000	300	5	00-150	
Ρ	low alloy and cast steel (less than 5% of alloying elements)		annealed	600	200	6		
				930	275	7		
			quenched and tempered	1000	300	8	70-120	0.15-0.30
				1200	350	9		
	high alloyed steel, cast steel and tool steel		annealed	680	200	10	80-150	0.10-0.25
			quenched and tempered	1100	325	11	70-120	0.10-0.25
	gray cast iron (GG)		ferritic / pearlitic		180	15	180-300	0.18-0.35
			pearlitic / martensitic		260	16	160-300	0.16-0.35
V	nodular cast iron (GGG)		ferritic		160	17		015 0 20
ĸ			pearlitic		250	18	450.050	0.15-0.30
	mallachia costivan		ferritic		130	19	150-250	0.45 0.05
	malleable cast iron		pearlitic	pearlitic 230 20			0.15-0.35	


*Reduce speed by 50% when using the MD-Extension

Solid Carbide Drills


Solid carbide drills offer an alternative to indexable drills for machining relatively small diameter holes with tight tolerances and in some cases are the only possible solution. Solid carbide drills are preferable for interrupted applications and machining holes with external coolant above 2XD. The market for solid carbide drills is very diverse and wide, but **ISCAR** tools stand out for their quality and reliability. The design of solid carbide drills can be both with internal coolant supply to the cutting zone, and with external coolant. These drills are coated for increased wear resistance. At some point, the drill reaches its wear limit and to extend tool life, solid drills can be reground. Regrinding can usually be carried out multiple times. Most of **ISCAR** solid carbide drills comply with the DIN 6537 standard and are available in a diameter range of 0.8 to 20 mm (0.125 to 0.765 inches) with a functional length of up to 50XD depending on the drill diameter. Basically, solid drills are made with a cylindrical shank. Solid carbide drills have high rigidity and are able to work with high feed rates without compromising the quality and durability of the drill.

SOLID-DRILL

Today, competition in the solid carbide drills market is very tough, but the quality of ISCAR solid carbide drills is considered the market leader, mainly when it comes to drills designed for certain materials. All ISCAR solid carbide drills are manufactured using a very precise grinding process, which minimizes runout, thereby affecting the stability of the drilling process. Thought out to the smallest detail design, accurate manufacturing, high quality coating - provide the best general proposed drill in the market. The assortment of ISCAR solid carbide drills is constantly expanding to cover more and more applications on the market.

The SCD...APN/ACPN (3XD-8XD) drills for general purpose holemaking were designed with the most advanced features to machine the variety materials in the market. An optimized sharp straight cutting edge provide smooth cutting and low cutting forces. Precise web thinning generates excellent self-centering and penetration capability for higher hole accuracy and drilling stability. The unique gash form creates optimal chip form in all materials. Narrow wiper reduce heat generation.

These drills are available with a diameter range of 3 to 12 mm (0.118 to 0.47 inches) according to tolerance m7 with 0.1 mm equivalent to 0.004 inch increments. SCD ... APN/ACPN drills designed with internal coolant holes for length to diameter ratio of 3XD, 5XD, 8XD and without internal coolant holes for length to diameter ratio of 3XD, 5XD. All SCD ... APN/ACPN drills are made from grade IC908, which is multilayered PVD coated and provides maximum toughness and increased wear resistance featuring prolonged tool life and high efficiency machining. SCD ... APN/ACPN is clearly the key to success in machining holes for general use.

The SCD...SXC (16XD-50XD) are extra-long solid carbide drills. The initial contact between the drill and the material, especially when it comes to long drills, greatly affects the drilling result. Smooth penetration into the material is ensured by a sharper point angle than in short tools. These drills are designed with double margins to improve accuracy, stability, and surface finish.

The combination of polished and enlarged flutes with optimal coolant nozzle size provide proper chip evacuation and the multi-layer coating allows drilling at high speed while achieving maximum tool life. **ISCAR** solid carbide long drills are excellent for drilling small diameters and deep holes in automotive crankshafts, camshafts, connecting rods, cylinder heads, cylinder blocks, hydraulic blocks and for dies and molds. These drills feature high metal removal rates that are at least six times faster than HSS drills. The advantageous metal removal rate saves machine time and man hours for much better overall productivity.

The SCCD...ACP (3XD-5D) are 3 flute solid carbide drills with internal coolant channels. The unique geometry design significantly improves productivity and machining stability under high cutting conditions, especially in cast iron and provides maximum hole quality, performance reliability, and economic output.

These drills are precision holemaking tools and can achieve IT8 hole tolerance. The 3 flute solid carbide drills feature high spiral flute helix and a reinforced web, available with 140° head point angle with a nearly flat bottom required for diverse applications. SCCD drills are made from grade IC608 i.e., IC08 submicron substrate (10% cobalt) and advanced TiAIN coating with the edge resistance silicon "bronze" layer to ensure stable and prolonged edge life.

Their dimensions are according to DIN 6537 standard and are manufactured in m7 diameter tolerance, with cylindrical shanks according to DIN 6535 standard. The 3 flute solid carbide drills can be used on any CNC machining center, lathe machine, or Swiss-type machines. The SCCD drills are available in the range of 4 to 12 millimeter (0.157 to 0.472 inch) diameters with 0.1 millimeter (0.004 inch) increments and are suitable for machining holes up to 5D deep. SCCD drills have been found to be very effective in the automotive, die and mold, oil and gas, power generation, and heavy industries.

The SCD...AP4/AP6 micro drill with no coolant holes is intended for machining very small diameters in the range of 0.8 to 2.9 mm equivalent to 0.031 to 0.114 inches with 0.1 millimeter (0.004 inch) increments and the functional length of 4XD and 6XD. These drills are manufactured according to m6 drill diameter tolerance, cylindrical shanks according to DIN 6535 standard. The design featured a high spiral flute helix, 140° head point angle and a standard flute back taper.

The submicron substrate and reinforced web thickness provide superior rigidity. The multiplayer TiAIN PVD coating and special edge preparation for smoother cuts while ensuring process reliability and increased tool life. The drills can be used for ISO P, ISO M, ISO K and ISO N material groups. SCD...AP4/AP6 are widely used on Swiss-type machines and in the following industries: miniature parts, automotive, die and molds, aviation and aerospace, micro fittings, computer motherboards, medical, and general engineering.

The SCD...AH5 are solid carbide drills for hard materials with a hardness of 50-70HRc. These drills are available with a diameter range of 3 to 10.5 mm equivalent to 0.118 to 0.413 inches with tolerance m7 in length to diameter ratio of 5XD without internal coolant holes. The very rigid design with a thick reinforced web and low helix angle, prevents breakage which may be caused by micro-chipping.

A special edge preparation provides a smooth cut and narrow optimized flute for machining hard materials and provides uninterrupted flow of typical small chips. The SCD...AH5 are made from IC903, which is comprised of IC03 ultra fine substrate and the latest TiAIN PVD coating. They feature excellent performance, superior hole quality, reliability and in addition provide an economical solution. SCD...AH5 are used in die and mold, aviation and aerospace, automotive, power train, power generation, oil and gas, and medical industries.

The SCDT ...-M... are solid carbide step drills with internal coolant holes in the diameter range of 2.5-8.5 mm, which are compatible with ISO M thread standard of M3 to M10 pre-thread hole dimensions and expand the existing DCT... **CHAM-DRILL** Pre-Thread line. The dimensions of the solid carbide pre-thread drills are according to DIN 6537 and the step length are according to DIN 8378.

The outer cutting drill diameter manufacture according to m7 tolerance and round shank according to h6 tolerance.

The drill point angle is 140° and spiral helix flute is 30°. The straight cutting edge and pinpointed chisel geometry is designed for machining ISO P, ISO M, ISO K materials. Submicron IC08 substrate with 10% cobalt content and the latest IC900 TiAIN PVD coated grade increase wear resistance and enable high cutting conditions. These step drills are suitable for machining any blind or through hole applications requiring a top chamfer, thus providing an applicative and cost-effective machining solution. The SCD...CVD drill design for composite materials features a unique design for optimal performance in all types of composite materials and promise high wear resistance.

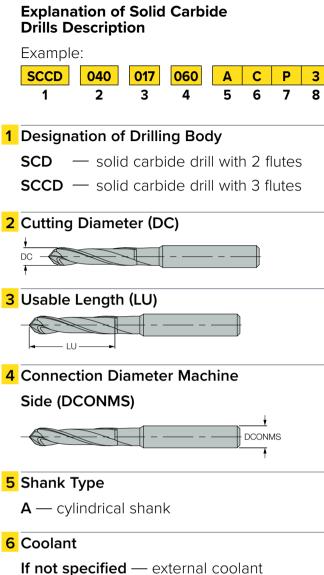
Drilling in composite materials places special demands on machining.

The last decades are characterized by an increase in the use of composite materials in various industries. Hole making has become one of the most common machining processes in composites. The processing of composite materials, which combine two or more materials with different physical and chemical properties, involves cutting or breaking the fibrous portion of the material. If this is not done correctly, then the layers of composite material will peel off from their places. Delamination affects hole quality and repeatability.

The amount of heat generated during the processing of composites also becomes significant.

The poor thermal conductivity of the material and the absence of chips pose a danger to the resin that holds the fibers of the material together.

In other words, the processing of composites reveals flaws in the processing that might otherwise go unnoticed.


These shortcomings are underlined by the growing range and unpredictability of composite materials available on the market. This makes competitive processing a challenge. The SCD...CVD is a high-performance drill for machining composites including carbon fiber (CFRP) and glass fiber reinforced (GFRP) materials. This drill was designed with a focus on industries that use composite materials extensively and require more drillable material per tool, such as the aerospace industry, which uses composite materials to make aircraft bodies and other parts. Other key characteristics of a drill are its profile and quality.

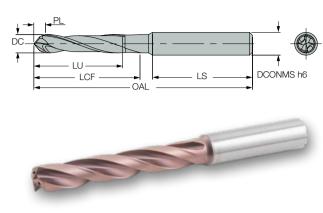
Composite materials are heterogeneous, and the introduction of any new material into the production cycle creates unique challenges; thickness, composition type, and so on. Carbide drills are well suited for machining aerospace components because the carbide strengthens the tool through its cutting geometry and shank. This optimizes the cutting action and increases material evacuation. However, due to the abrasive nature of composites, carbide also wears quickly. This is problematic, especially in automated production plants. To overcome this, chemical vapor deposition (CVD) diamond coating technology is used. CVD is a very hard tool material that is ideal for machining composites and multilayer materials. Applying CVD layers across the entire cutting edge can significantly increase tool life, and due to low CVD friction and high thermal conductivity, tool edges are less prone to built-up edge (BUE). Because the CVD stays sharp, it dissipates heat, has low friction, and minimizes the tendency for bore problems. Thus, CVD grade is preferred where there are a large number of holes and higher productivity is required. SCD...CVD provides excellent tool

life, reduced tool changes, and repeatability and reliability when machining composite materials.

The SCD...CVD is a specialty cutting tool that is critical to successful holemaking, especially in components made from composite or stacked materials. Such a tool can also play a critical role in helping companies fully automate their processes, even when processing rigid composite materials.

If not specified — e

 \mathbf{c} — internal coolant


7 Cutting Geometry

P — cutting geometry for steel

8 Functional Length to Diameter Ratio (LU/DC)

functional length is 3 times the cutting diameter of the drill

Basic Dimensions of Solid Carbide Drill

DC	— cutting diameter
DCONM	$\mathbf{S}-$ connection diameter
	machine side
LU	—usable length
LCF	—length chip flute
OAL	— overall length
LS	—shank length
PL	— point length
КСН	— corner chamfer angle
CHW	— corner chamfer width

SOLID-DRILL Cutting Conditions

Recommended Machining Conditions for Solid Carbide Drills D=0.8-2.9 mm

9 Material mon-siloy Strength (mm) Hardness (mm) Metrial (mm) Speed X, (mm) QueAt. Øth.51.9 Q2.24.0 Q2.52.9 non-siloy ≤0.25% C steel and cast steel and co.55% C culting steel annealed (mm) 420 125 1 50-100 0.03-010 0.05-015 0.07-017 0.08-020 steel and cast steel and cast steel and co.55% C culting steel annealed (mm) 650 250 3 40-85 0.03-010 0.05-015 0.07-017 0.08-020 annealed culting steel annealed (mempered 750 220 4 40-85 0.03-010 0.05-015 0.07-017 0.08-020 annealed aloying elements annealed (mempered 600 200 6 40-75 0.03-010 0.05-015 0.07-017 0.08-020 stainless steel aloying elements annealed (manched and quenched a				Tanaila	1			Food (mm/row) vs. Drill Diamotor				
9 Material Condition [Wim] HB No. ¹⁰ (m.10) 00.814 015-19 02.42 02.53k 0 00.60 00.0000 00.0000 00.0000				Tensile	Hardnoos	Matorial	Cutting Speed V	Fee	d (mm/rev) v	rs. Drill Diam	eter	
ann-aloy steel, free cutting steel 2025% C (055% C) annealed quenched and tempered 550 190 2 40-100 0.03-010 0.05-015 0.07-017 0.08-020 Steel, free cutting steel 20.55% C quenched and tempered 750 220 4 40-85 0.03-010 0.05-015 0.07-017 0.08-020 P low alloy and cast steel (less than 5% of alloying elements) annealed 700 200 6 40-85 0.03-010 0.05-015 0.07-017 0.08-020 Ress than 5% of alloying elements) annealed 7000 200 6 40-85 0.03-010 0.05-015 0.07-017 0.08-020 Stailers steel and cast steel annealed quenched and tempered 1000 300 8 40-60 0.03-010 0.05-015 0.07-017 0.08-020 Stailers steel and cast steel tempered 100 325 11 30-50 0.03-010 0.05-010 0.06-010 0.06-010 0.06-010 0.06-010 0.06-010 0.06-010 0.06-010 0.06-010 0.06-010 0.06-010	So	Material	Condition					Ø 0.8-1.4	Ø1.5-1.9	Ø 2 -2.4	Ø 2.5 -2.9	
non-aloy steel and cast <0.55% c cutting steel quenched and tempered 850 250 3 40-85 0.03-010 0.05-015 0.07-017 0.08-020 cutting steel ±0.55% c quenched and tempered 1000 300 5 40-85 0.03-010 0.05-015 0.07-017 0.08-020 P low alloy and cast steel alloying elements) annealed 600 200 6 40-75 0.03-010 0.05-015 0.07-017 0.08-020 Nigh alloyed steel, cast steel and to steel annealed 600 200 10 30-50 0.03-010 0.05-015 0.07-017 0.08-020 stainless steel and cast steel annealed 680 200 10 30-50 0.03-010 0.05-015 0.07-017 0.08-020 stainless steel and cast steel annealed 680 200 12 20-35 0.03-006 0.04-008 0.05-010 0.06-010 stainless steel and cast steel austentitic, duplex 600 180 14 20-35 0.03-010 0.05-015 0.07-017		<0.25% (annealed	420	125	1	50-100	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
steel and cast steel, free cutting steel ≥0.55% C duenched anneeled quenched and tempered 100 300 5 40-85 0.03-010 0.05-015 0.07-017 0.08-020 P low alloy and cast steel (ess than 5% of alloying elements) quenched and tempered 1000 300 5 40-85 0.03-010 0.05-015 0.07-017 0.08-020 P low alloy and cast steel (ess than 5% of alloying elements) quenched and tempered 930 275 7 40-60 0.03-010 0.05-015 0.07-017 0.08-020 tables steel alloying elements) quenched and quenched and quenched and quenched and quenched and tempered 1000 320 8 40-60 0.03-010 0.05-015 0.07-017 0.08-020 stael and tool steel annealed 680 200 10 30-50 0.03-010 0.05-015 0.07-017 0.08-020 stael fact steel martensitic 820 240 12 20-35 0.03-000 0.05-015 0.07-017 0.08-020 gray cast iron (SG) ferritic / martensitic 220 14 20-35 0.03-010		≥0.25% C	annealed	650	190	2	40-100	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
cutting steel ≥0.55% C cuenched and tempered 1000 300 5 40-85 0.03-010 0.05-015 0.07-017 0.08-020 P annealed 600 300 5 40-85 0.03-010 0.05-015 0.07-017 0.08-020 P annealed 600 200 6 40-75 0.03-010 0.05-015 0.07-017 0.08-020 gest marks of alloying elements) quenched and tempered 930 275 7 40-60 0.03-010 0.05-015 0.07-017 0.08-020 stainless steel annealed 680 200 10 30-50 0.03-010 0.05-015 0.07-017 0.08-020 stainless steel annealed 680 200 10 30-50 0.03-010 0.05-015 0.07-017 0.08-020 stainless steel martensitic 820 20-01 12 20-35 0.03-000 0.04-008 0.05-010 0.06-010 gray cast iron (SG) ferritic / martensitic 220 18		steel and cast <0.55% (850	250	3	40-85	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
S0.55% C quenched and tempered 1000 300 5 40-85 0.03-010 0.05-015 0.07-017 0.08-020 P low alloy and cast steel alloying elements) annealed 600 200 6 40-75 0.03-010 0.05-015 0.07-017 0.08-020 high alloyed steel, cast steel and tool steel annealed 680 200 10 30-50 0.03-010 0.05-015 0.07-017 0.08-020 Migh alloyed steel, cast stainless steel and cast steel annealed martensitic 680 200 10 30-50 0.03-010 0.05-015 0.07-017 0.08-020 Stainless steel and cast steel ferritic / martensitic 820 240 13 20-35 0.03-006 0.04-0.08 0.05-010 0.06-010 <		· · · · · · · · · · · · · · · · · · ·	annealed	750	220	4	40-85	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
P Model and cast steel (less than 5% of alloying elements) 930 275 7 40.60 0.03-010 0.05-015 0.07-017 0.08-020 high alloyed steel, cast steel and tool steel annealed 680 200 10 30-50 0.03-010 0.05-015 0.07-017 0.08-020 stainless steel and cast steel annealed 680 200 10 30-50 0.03-010 0.05-015 0.07-017 0.08-020 stainless steel and cast steel ferritic / martensitic 680 200 12 20-35 0.03-006 0.04-008 0.05-010 0.06-010 0.06-010 gray cast iron (GG) ferritic / pearlitic 600 180 14 20-35 0.03-010 0.05-015 0.07-017 0.08-020 mattensitic 600 180 14 20-35 0.03-006 0.04-008 0.05-010 0.06-010 gray cast iron (GG) ferritic / martensitic 260 16 40-70 0.03-010 0.05-015 0.07-017 0.08-020 maleable cast iron fe		≥0.55% C	quononou ana	1000	300	5	40-85	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
Itess than 5% of alloying elements) quenched and tempered 930 275 7 40-60 0.03-010 0.05-015 0.07-017 0.08-020 high alloyed steel, cast steel and tool steel annealed 680 200 10 30-50 0.03-010 0.05-015 0.07-017 0.08-020 stainless steel and cast steel ferritic / matensitic 680 200 10 30-50 0.03-010 0.05-015 0.07-017 0.08-020 stainless steel and cast steel ferritic / matensitic 820 240 13 20-35 0.03-006 0.04-008 0.05-010 0.06-010 gray cast iron (GG) ferritic / pearlitic 180 15 40-80 0.03-010 0.05-015 0.07-017 0.08-020 malleable cast iron (GG) ferritic / pearlitic 180 15 40-80 0.03-010 0.05-015 0.07-017 0.08-020 malleable cast iron (GGG) ferritic / pearlitic 260 16 40-70 0.03-010 0.05-015 0.07-017 0.08-020 malleable cast iron (GGG) <			annealed	600	200	6	40-75	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
alloying elements) tempered 1000 300 8 40-b0 0.03-010 0.05-015 0.07-017 0.08-0.20 high alloyed steel, cast steel and tool steel annealed 680 200 10 30-50 0.03-010 0.05-015 0.07-017 0.08-0.20 stainless steel and cast steel ferritic / martensitic 680 200 12 20-35 0.03-010 0.05-015 0.07-017 0.08-0.20 stainless steel and cast steel ferritic / martensitic 680 200 12 20-35 0.03-006 0.04-008 0.05-010 0.06-010 stainless steel and cast steel austentitic, duplex 600 180 14 20-35 0.03-00 0.04-008 0.05-010 0.06-010 stainless steel and cast steel austentitic / pearlitic 180 15 40-80 0.03-010 0.05-015 0.07-017 0.08-020 gray cast iron (GG) ferritic / pearlitic 250 18 50-95 0.03-010 0.05-015 0.07-017 0.08-020 0.08-020 0.03-010 <	Р			930	275	7	40-60	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
high alloyed steel, cast steel and col steel 1200 350 9 40-60 0.030-10 0.05-015 0.07-017 0.08-020 stael and col steel quenched and tempered 100 325 11 30-50 0.03-010 0.05-015 0.07-017 0.08-020 stainless steel and cast steel ferritic / martensitic 820 240 13 20-35 0.03-006 0.04-008 0.05-010 0.06-010 0.06-010 and cast steel martensitic 820 240 13 20-35 0.03-006 0.04-008 0.05-010 0.06-010 0.06-010 and cast steel austentitic / uperilitic 820 240 13 20-35 0.03-006 0.04-008 0.05-010 0.06-010 gray cast iron (GG) ferritic / perilitic 180 15 40-80 0.03-010 0.05-015 0.07-017 0.08-020 malleable cast iron (GGG) ferritic 160 17 40-95 0.03-010 0.05-015 0.07-017 0.08-020 nodular cast iron (GGG) ferritic /		•		1000	300	8	40-60	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
Inigh alloyed site and tool steel quenched and tempered 1100 325 11 30-50 0.03-010 0.05-015 0.07-017 0.08-020 stainless steel and cast steel ferritic / martensitic 680 200 12 2-35 0.03-0.06 0.04-0.08 0.05-0.10 0.06-0.10 M stainless steel and cast steel austenitic, duplex 600 180 14 20-35 0.03-0.06 0.04-0.08 0.05-0.10 0.06-0.10 gray cast iron (GG) and cast steel austenitic, duplex 600 180 14 20-35 0.03-0.0 0.05-0.15 0.07-0.07 0.08-0.20 gray cast iron (GG) ferritic / pearlitic 180 15 40-80 0.03-0.10 0.05-0.15 0.07-0.07 0.08-0.20 malleable cast iron (GGG) ferritic 160 17 40-95 0.03-0.10 0.05-0.15 0.07-0.07 0.08-0.20 malleable cast iron (GGG) ferritic 130 19 40-80 0.03-0.10 0.05-0.15 0.07-0.07 0.08-0.20 aluminum-wrought alloys		unoying cicinents)	tempered	1200	350	9	40-60	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
steel and tool steel Querched and tempered matters 1100 325 11 30-50 0.03-010 0.05-015 0.07-017 0.08-020 stainless steel and cast steel ferritic / martensitic 680 200 12 20-35 0.03-0.06 0.04-0.08 0.05-0.10 0.06-0.10 M stainless steel and cast steel austenitic, duplex 600 180 14 20-35 0.03-0.06 0.04-0.08 0.05-0.10 0.06-0.10 gray cast iron (GG) ferritic / paritic 180 15 40-80 0.03-0.10 0.05-0.15 0.07-0.17 0.08-0.20 mattensitic 260 16 40-70 0.03-0.10 0.05-0.15 0.07-0.17 0.08-0.20 mattensitic 260 16 40-70 0.03-0.10 0.05-0.15 0.07-0.17 0.08-0.20 mattensitic 230 20 40-80 0.03-0.10 0.05-0.15 0.07-0.17 0.08-0.20 mattensitic 230 20 40-80 0.03-0.10 0.05-0.15 0.07-0.17 0.08-0.20		high alloyed steel east	annealed	680	200	10	30-50	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
and cast steel martensitic 820 240 13 20-35 0.03-0.06 0.04-0.08 0.05-0.10 0.06-0.10 M and cast steel austenitic, duplex 600 180 14 20-35 0.03-0.06 0.04-0.08 0.05-0.10 0.06-0.10 gray cast iron (GG) ferritic / pearitic / martensitic 260 16 40-80 0.03-0.10 0.05-0.15 0.07-0.17 0.08-0.20 Modular cast iron (GG) ferritic 160 17 40-95 0.03-0.10 0.05-0.15 0.07-0.17 0.08-0.20 malleable cast iron (GGG) ferritic 160 17 40-95 0.03-0.10 0.05-0.15 0.07-0.17 0.08-0.20 malleable cast iron (GGG) ferritic 130 19 40-80 0.03-0.10 0.05-0.15 0.07-0.17 0.08-0.20 malleable cast iron (GGG) ferritic 130 19 40-80 0.03-0.10 0.05-0.15 0.07-0.17 0.08-0.20 malleable cast iron not hardenable 60 21 80-150 0.				1100	325	11	30-50	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
Stainless steel and cast steel austenitic, duplex 600 180 14 20-35 0.03-0.06 0.04-0.08 0.05-0.10 0.06-0.10 gray cast iron (GG) modular cast iron (GG) ferritic / pearlitic pearlitic 180 15 40-80 0.03-0.10 0.05-0.15 0.07-0.17 0.08-0.20 Modular cast iron (GG) malleable cast iron ferritic 160 17 40-95 0.03-0.10 0.05-0.15 0.07-0.17 0.08-0.20 malleable cast iron ferritic 160 17 40-95 0.03-0.10 0.05-0.15 0.07-0.17 0.08-0.20 aluminum-wrought alloys not hardenable 600 21 80-95 0.03-0.10 0.05-0.15 0.07-0.17 0.08-0.20 aluminum-wrought alloys aluminametria ferritic 230 20 40-80 0.03-0.10 0.05-0.15 0.07-0.17 0.08-0.20 aluminum-wrought alloys alumatenable 60 21 80-150 0.03-0.10 0.05-0.15 0.07-0.17 0.08-0.20 aluminum-grad 212% Si ind rhemable		stainless steel	ferritic / martensitic	680	200	12	20-35	0.03-0.06	0.04-0.08	0.05-0.10	0.06-0.10	
M and cast steel austentitic, duplex 600 180 14 20-35 0.03-0.06 0.04-0.08 0.05-0.10 0.05-0.10 0.05-0.10 0.05-0.10 0.05-0.10 0.05-0.10 0.05-0.10 0.05-0.10 0.05-0.10 0.05-0.10 0.05-0.15 0.07-017 0.08-0.20 gray cast iron (GG) ferritic 160 17 40-95 0.03-010 0.05-015 0.07-017 0.08-0.20 malleable cast iron ferritic 160 17 40-95 0.03-010 0.05-015 0.07-017 0.08-0.20 malleable cast iron ferritic 160 17 40-95 0.03-010 0.05-015 0.07-017 0.08-0.20 malleable cast iron ferritic 130 19 40-80 0.03-010 0.05-015 0.07-017 0.08-0.20 malleable cast iron ferritic 130 19 40-80 0.03-010 0.05-015 0.07-017 0.08-0.20 malleable cast alloys fardenable 60 21 80-150 0.03-010 <t< td=""><td></td><td>and cast steel</td><td>martensitic</td><td>820</td><td>240</td><td>13</td><td>20-35</td><td>0.03-0.06</td><td>0.04-0.08</td><td>0.05-0.10</td><td>0.06-0.10</td></t<>		and cast steel	martensitic	820	240	13	20-35	0.03-0.06	0.04-0.08	0.05-0.10	0.06-0.10	
gray cast iron (GG) pearlitic / martensitic 260 16 40-70 0.03-0.0 0.05-015 0.07-017 0.08-0.20 N nodular cast iron (GGG) ferritic 160 17 40-95 0.03-0.10 0.05-015 0.07-017 0.08-0.20 malleable cast iron ferritic 250 18 50-95 0.03-0.10 0.05-015 0.07-017 0.08-0.20 malleable cast iron ferritic 130 19 40-80 0.03-010 0.05-015 0.07-017 0.08-0.20 aluminum-wought alloys ferritic 230 20 40-80 0.03-010 0.05-015 0.07-017 0.08-0.20 aluminum-cast alloys fold hardenable 60 21 80-150 0.03-010 0.05-015 0.07-017 0.08-0.20 aluminum-cast alloys file matenable 75 23 80-150 0.03-010 0.05-015 0.07-017 0.08-0.20 aluminum-cast alloys free cutting 110 26 80-150 0.03-010 0.05-015 0.07-017 <	М		austenitic, duplex	600	180	14	20-35	0.03-0.06	0.04-0.08	0.05-0.10	0.06-0.10	
R mattensitic 260 16 40.70 0.03-0.10 0.05-0.15 0.07-0.71 0.08-0.20 Modular cast iron (GGG) ferritic 160 17 40-95 0.03-0.10 0.05-0.15 0.07-0.71 0.08-0.20 malleable cast iron ferritic 130 19 40-80 0.03-0.10 0.05-0.15 0.07-0.71 0.08-0.20 malleable cast iron ferritic 230 20 40-80 0.03-0.10 0.05-0.15 0.07-0.17 0.08-0.20 aluminum-wrought alloys not hardenable 60 21 80-150 0.03-0.10 0.05-0.15 0.07-0.17 0.08-0.20 aluminum-cast alloys 512% Si not hardenable 100 22 80-150 0.03-0.10 0.05-0.15 0.07-0.17 0.08-0.20 aluminum-cast alloys 512% Si high temperature 130 25 80-150 0.03-0.10 0.05-0.15 0.07-0.17 0.08-0.20 non metallic fiber plastics DD 2 80-150 0.03-0.10 0.05-0.15 <th< td=""><td></td><td></td><td>ferritic / pearlitic</td><td></td><td>180</td><td>15</td><td>40-80</td><td>0.03-0.10</td><td>0.05-0.15</td><td>0.07-0.17</td><td>0.08-0.20</td></th<>			ferritic / pearlitic		180	15	40-80	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
Incluiar cast iron (GGG) pearlitic 250 18 50-95 0.03-010 0.05-015 0.07-017 0.08-020 malleable cast iron ferritic 130 19 40-80 0.03-010 0.05-015 0.07-017 0.08-020 aluminum-wrought alloys ind hardenable 60 21 80-150 0.03-010 0.05-015 0.07-017 0.08-020 aluminum-cast alloys ind hardenable 60 21 80-150 0.03-010 0.05-015 0.07-017 0.08-020 aluminum-cast alloys ind hardenable 60 21 80-150 0.03-010 0.05-015 0.07-017 0.08-020 in ardenable 90 24 80-150 0.03-010 0.05-015 0.07-017 0.08-020 in ardenable 90 24 80-150 0.03-010 0.05-015 0.07-017 0.08-020 icast alloys if get exiting 110 26 80-150 0.03-010 0.05-015 0.07-017 0.08-020 icast illoys fiser plastics <		gray cast iron (GG)			260	16	40-70	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
Additional and a second seco	Κ	nodular cast iron (CCC)	ferritic		160	17	40-95	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
Maileable Cast Iron pearlitic 230 20 40-80 0.03-010 0.05-015 0.07-017 0.08-0.20 aluminum-wrought alloys not hardenable 60 21 80-150 0.03-010 0.05-015 0.07-017 0.08-0.20 aluminum-cast alloys $\frac{<12\% Si}{>12\% Si}$ not hardenable 75 23 80-150 0.03-010 0.05-015 0.07-017 0.08-0.20 hardenable 90 24 80-150 0.03-010 0.05-015 0.07-017 0.08-0.20 hardenable 90 24 80-150 0.03-010 0.05-015 0.07-017 0.08-0.20 hardenable 90 24 80-150 0.03-010 0.05-015 0.07-017 0.08-0.20 hopper alloys brass 90 27 50-150 0.03-010 0.05-015 0.07-017 0.08-0.20 non metallic brass 90 27 50-150 0.07-015 0.08-018 0.09-018 aluminum-wrought fiber plastics 70 Shore D <t< td=""><td></td><td></td><td>pearlitic</td><td></td><td>250</td><td>18</td><td>50-95</td><td>0.03-0.10</td><td>0.05-0.15</td><td>0.07-0.17</td><td>0.08-0.20</td></t<>			pearlitic		250	18	50-95	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
N Dearlitic 230 20 40-80 0.03-0.10 0.05-0.15 0.07-0.17 0.08-0.20 aluminum-wrought alloys not hardenable 60 21 80-150 0.03-0.10 0.05-0.15 0.07-0.17 0.08-0.20 aluminum-cast alloys ≤12% Si not hardenable 100 22 80-150 0.03-0.10 0.05-0.15 0.07-0.17 0.08-0.20 not hardenable 90 24 80-150 0.03-0.10 0.05-0.15 0.07-0.17 0.08-0.20 nardenable 90 24 80-150 0.03-0.10 0.05-0.15 0.07-0.17 0.08-0.20 high temperature 130 25 80-150 0.03-0.10 0.05-0.15 0.07-0.17 0.08-0.20 copper alloys ±1% Pb free cutting 110 26 80-150 0.03-0.10 0.05-0.15 0.07-0.17 0.08-0.20 non metallic brass 90 27 50-150 0.05-0.15 0.07-0.17 0.08-0.20 non metallic fiber plastics D		malloablo cast iron	ferritic		130	19	40-80	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
aluminum-wrought alloys hardenable 100 22 80-150 0.03-0.10 0.05-0.15 0.07-0.17 0.08-0.20 aluminum- cast alloys <12% Si			pearlitic		230	20	40-80	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
Allocation Initial Action and enable Initian Action and enable Initial Action an		aluminum wrought allov	not hardenable		60	21	80-150	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
aluminum- cast alloys hardenable 90 24 80-150 0.03-010 0.05-015 0.07-0.17 0.08-0.20 N >12% Si high temperature 130 25 80-150 0.03-010 0.05-015 0.07-0.17 0.08-0.20 N copper alloys >1% Pb free cutting 110 26 80-150 0.03-010 0.05-015 0.07-0.17 0.08-0.20 N copper alloys >1% Pb free cutting 110 26 80-150 0.03-010 0.05-015 0.07-0.17 0.08-0.20 0.09-0.18 non metallic brass 90 27 50-150 0.05-015 0.07-0.18 0.08-0.20 0.09-0.22 non metallic - duroplastics, fiber plastics 70 Shore D 29 - <td></td> <td></td> <td>hardenable</td> <td></td> <td>100</td> <td>22</td> <td>80-150</td> <td>0.03-0.10</td> <td>0.05-0.15</td> <td>0.07-0.17</td> <td>0.08-0.20</td>			hardenable		100	22	80-150	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
Cast alloys		aluminum <12% Si	not hardenable		75		80-150	1		0.07-0.17	0.08-0.20	
N >12% Si high temperature 130 25 80-150 0.03-0.10 0.05-0.15 0.07-0.17 0.08-0.20 N copper alloys 5% Pb free cutting 110 26 80-150 0.03-0.10 0.05-0.15 0.07-0.17 0.08-0.20 Image: copper alloys brass 90 27 50-150 0.05-0.12 0.07-0.15 0.08-0.20 0.09-0.22 Image: copper alloys brass 90 27 50-150 0.05-0.15 0.07-0.17 0.08-0.20 0.09-0.22 Image: copper alloys brass 90 27 50-150 0.05-0.15 0.07-0.18 0.08-0.20 0.09-0.22 Image: copper alloys duroplastics, fiber plastics 70 Shore D 29 29 29 29 29 29 29 20			hardenable		90	24	80-150	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
copper alloys brass 90 27 50-150 0.05-012 0.07-015 0.08-0.18 0.09-0.18 non metallic electrolytic copper 100 28 60-160 0.05-0.15 0.07-0.18 0.08-0.20 0.09-0.22 non metallic duroplastics, fiber plastics 70 Shore D 29 29 20 <		>12% Si	high temperature		130		80-150	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
copper alloys brass 90 27 50-150 0.05-0.12 0.07-0.15 0.08-0.18 0.09-0.18 non metallic electrolytic copper 100 28 60-160 0.05-0.15 0.07-0.18 0.08-0.20 0.09-0.22 non metallic duroplastics, fiber plastics 70 Shore D 29	Ν	>1% Pb	free cutting					1				
Inon metallic duroplastics, fiber plastics 70 Shore D 29 Image: Constraint of the c		copper alloys	brass				50-150	1		0.08-0.18	1	
Inon metallic fiber plastics D 29 Image: Constraint of the plastics D 29 Image: Constraint of the plastics D 29 Image: Constraint of the plastics Image:			electrolytic copper			28	60-160	0.05-0.15	0.07-0.18	0.08-0.20	0.09-0.22	
hard rubber bard rubber bb Shore D 30		non metallic			D	29						
high temperature alloys Fe based hardened 280 32 10-20 0.02-0.04 0.03-0.06 0.04-0.07 0.04-0.08 S Ainor Co based Aindened 250 33 10-20 0.02-0.04 0.03-0.06 0.04-0.07 0.04-0.08 Itianium alloys Ni or Co based Aindened 350 34 10-20 0.02-0.04 0.03-0.06 0.04-0.07 0.04-0.08 Itianium alloys Pure 400 190 36 10-20 0.02-0.03 0.02-0.03 0.03-0.04 0.03-0.04 Itianium alloys Interped 1050 310 37 10-20 0.02-0.03 0.02-0.03 0.03-0.04 0.03-0.04			hard rubber		D							
high temperature alloys Ni or Co based annealed 280 32 10-20 0.02-0.04 0.03-0.06 0.04-0.07 0.04-0.08 alloys Ni or Co based annealed 250 33 10-20 0.02-0.04 0.03-0.06 0.04-0.07 0.04-0.08 titanium alloys Ni or Co based nardened 350 34 10-20 0.02-0.04 0.03-0.06 0.04-0.07 0.04-0.08 titanium alloys pure 400 190 36 10-20 0.02-0.03 0.02-0.03 0.03-0.04 0.03-0.04 titanium alloys alpha+beta alloys, hardened 1050 310 37 10-20 0.02-0.03 0.02-0.03 0.03-0.04 0.03-0.04 bardened 55 HBC 38 10-20 0.01-0.02 0.01-0.02 0.02-0.03 0.02-0.03 0.02-0.03 0.02-0.03		Fe hase						1			0.04-0.08	
S Ni or Co based hardened 350 34 10-20 0.02-0.04 0.03-0.06 0.04-0.07 0.04-0.08 alloys based cast 320 35 10-20 0.02-0.04 0.03-0.06 0.04-0.07 0.04-0.08 titanium alloys pure 400 190 36 10-20 0.02-0.03 0.02-0.03 0.03-0.04 0.03-0.04 titanium alloys alpha+beta alloys, hardened 1050 310 37 10-20 0.02-0.03 0.02-0.03 0.03-0.04 0.03-0.04		high	nardened		1			1			0.04-0.08	
S hardened 350 34 10-20 0.02-0.04 0.03-0.06 0.04-0.07 0.04-0.08 cast 320 35 10-20 0.02-0.04 0.03-0.06 0.04-0.07 0.04-0.08 titanium alloys pure 400 190 36 10-20 0.02-0.03 0.02-0.03 0.03-0.04 0.03-0.04 titanium alloys alpha+beta alloys, hardened 1050 310 37 10-20 0.02-0.03 0.02-0.03 0.03-0.04 0.03-0.04					1			1			0.04-0.08	
cast 320 35 10-20 0.02-0.04 0.03-0.06 0.04-0.07 0.04-0.08 titanium alloys pure 400 190 36 10-20 0.02-0.03 0.02-0.03 0.03-0.04 0.03-0.04 0.03-0.04 titanium alloys alpha+beta alloys, hardened 1050 310 37 10-20 0.02-0.03 0.02-0.03 0.03-0.04 0.03-0.04 bardened 55 HBC 38 10-20 0.01-0.02 0.01-0.02 0.02-0.03 0.02-0.03	S	IdiiOVS	hardened		1			1				
titanium alloys alpha+beta alloys, hardened 1050 310 37 10-20 0.02-0.03 0.02-0.03 0.03-0.04 0.03-0.04 bardened 55 HBC 38 10-20 0.01-0.02 0.01-0.02 0.02-0.03					i			1			0.04-0.08	
hardened 55 HRC 38 10-20 0.02-0.03 0.02-0.03 0.02-0.04 0.03-0.04				400	190	36	10-20	0.02-0.03	0.02-0.03	0.03-0.04	0.03-0.04	
hardened 55 HRC 38 10-20 0.01-0.02 0.01-0.02 0.02-0.03 0.02-0.03		titanium alloys	hardened	1050							0.03-0.04	
		hardened steel	hardened		55 HRC	38	10-20	0.01-0.02	1		0.02-0.03	
hardened 60 HRC 39 10-20 0.01-0.02 0.01-0.02 0.02-0.03 0.02-0.03	н						1	Î			0.02-0.03	
chilled cast iron cast 400 40 10-20 0.01-0.02 0.01-0.02 0.02-0.03 0.02-0.03								1			0.02-0.03	
cast iron hardened 55 HRC 41 10-20 0.01-0.02 0.02-0.03 0.02-0.03 • For drill with length to diameter ratio larger than 6xD, reduce feed by 20%							10-20	0.01-0.02	0.01-0.02	0.02-0.03	0.02-0.03	

• For drill with lengh to diameter ratio larger than 6xD, reduce feed by 20%

• If the RPM exceeds 10,000, a dynamic balance should be done to the system

• Maximal radial and axial runout should not exceed 0.01 mm As a starting value, the middle of the recommended machining range should be used, then (according to wear results), conditions can be changed in order to optimize performance.

Recommended Machining Conditions for Solid Carbide Drills D3.0-20.0 mm

							Cutting		Feed (mm	/rev) vs. Dri	II Diameter	r
ISO	Materia	I	Condition	Tensile Strength [N/mm ²]	Hardness HB	Material No. ⁽¹⁾	Speed V _c m/min	Ø3-5	Ø5.1-8	Ø 8.1-12	Ø12.1-16	Ø 16.1-20
-).25% C	annealed	420	125	1	80-120	0.10-0.18	0.15-0.25		0.20-0.35	
).25% C	annealed	650	120	2	80-120	0.10-0.18	0.15-0.25		0.20-0.35	
	staal and).55% C	quenched and tempered	850	250	3	70-100	0.10 0.10	0.10 0.20	0.2 0.30	0.20 0.00	0.20 0.10
	ree cutting	annealed	750	220	4		0.10-0.20	0.15-0.28	02-035	0.20-0.38	0 2 5 - 0 4 2	
).55% C	quenched and tempered	1000	300	5						0.20 0.12
P	low alloy and ca		annealed	600 930	200 275	6 7	70-90	0.10-0.18	0.15-0.25	0.2-0.30	0.20-0.35	0.25-0.40
	steel (less than		quenched and	1000	300	8	60-80	0.10-0.18	0.15-0.25	02-030	0.20-0.35	0 2 5-0 40
	alloying elemer	nts)	tempered	1200	350	9	50-70		0.15-0.28		0.20-0.38	
			annealed	680	200	10	60-80		0.15-0.28	1	0.20-0.38	
	high alloyed ste steel and tool s		quenched and tempered	1100	325	11	50-70	0.10-0.15	0.12-0.20		0.16-0.30	
	stainless steel		ferritic / martensitic	680	200	12	25-75	0.04-0.10	0.05-0.15	0.05-0.18	0.08-0.20	0.10-0.20
	and cast steel		martensitic	820	240	13	25-75	0.04-0.10	0.05-0.15	0.05-0.18	0.08-0.20	0.10-0.20
M	stainless steel and cast steel		austenitic, duplex	600	180	14	25-75	0.04-0.10	0.05-0.15	0.05-0.18	0.08-0.20	0.10-0.20
	gray cast iron (0	36)	ferritic / pearlitic		180	15	85-105	0.15-0.25	0.20-0.35	0.25-0.45	0.30-0.50	0.35-0.55
K		30)	pearlitic / martensitic		260	16	75-90	0.15-0.25	0.20-0.35	0.25-0.45	0.30-0.50	0.35-0.55
r	nodular cast iron (GGG)		ferritic		160	17						
			pearlitic		250	18	65-80	012-0.20	015-025	0 20-0 35	0.25-0.40	0.30-0.45
	malleable cast i	iron	ferritic pearlitic		130	19	00 00	0.12 0.20	0.10 0.20	0.20 0.00	0.20 0.10	0.000 0110
					230	20						
	aluminum- wrought alloys				60	21	70-300	0.10-0.25	0.15-0.35	0.25-0.45	0.30-0.50	0.35-0.55
			hardenable		100	22	70-200					
	aluminum- ≤1	2% Si	not hardenable		75	23 24	70-300	0.07-0.18	0.12-0.25	0.20-0.35	0.25-0.45	0.30-0.50
	cast alloys 🛛 —		hardenable		90	24						
N		2% Si	high temperature		130	25						
		% Pb	free cutting		110 90	26 27						
	copper alloys		brass electrolytic copper		100	27						
	non metallic		duroplastics, fiber plastics		70 Shore D	29						
			hard rubber		55 Shore D	30						
			annealed		200	31						
	high Fe	e based	hardened		280	32						
	temperature		annealed		250	33						
	allovs	i or Co	hardened		350	34						
S	5 Da	ased	cast		320	35						
	titanium allovs	itanium alloys		400	190	36						
				1050	310	37	15-35		0.04-0.10		0.08-0.15	0.08-0.18
	hardened steel		hardened		55 HRC	38	40-70	0.06-0.10	0.08-0.12	0.10-0.14	0.12-0.16	0.14-0.18
Н			hardened		60 HRC	39						
	chilled cast iron	۱	cast		400	40						
	cast iron		hardened		55 HRC	41						

As a starting value, the middle of the recommended machining range should be used, then (according to wear results), conditions can be changed in order to optimize performance.

When using external coolant supply only, reduce cutting speed by 10%

• Use internal coolant supply when machining austenitic stainless steel

Recommended Machining Conditions for SCD-SXC Solid Carbide Drills

<u> </u>			Ining Conditio								•••	
				Å						tting Diame eed (mm/rev		
				Ň	÷				<u>г</u>	eed (mm/re	v) 	
ISO	Mater	ial	Condition	Material Group No.	Tensile Strength [N/mm ²]	Hardness HB	Cutting Speed V _c (m/min)	3.0-5.0	5.1-8.0	8.1-10.0	10.1-16	16.1-20
		<0.25% C	annealed	1	420	125						
	non allow	≥0.25% C	annealed	2	650	190						
	non-alloy steel and cast steel, free	<0.55% C	quenched and tempered	3	850	250						
	cutting steel		annealed	4	750	220	70-90					
		≥0.55% C	quenched and tempered	5	1000	300			014 0 04		0.18-0.3	0 2 0 25
			annealed	6	600	200		0.1-0.18	0.14-0.24	0.16-0.26	0.18-0.3	0.2-0.35
Ρ	low alloy and o (less than 5% o			7	930	275						
	alloying eleme		quenched and tempered	8	1000	300						
				9	1200	350		-				
	high alloyed steel, cast steel and tool steel		annealed	10	680	200						
			quenched and tempered	11	1100	325	75-85					
	stainless steel		ferritic/martensitic	12	680	200	60-70	0.08-0.14	0.1-0.18	0.12-0.2	0.14-0.22	0.16-0.24
	and cast steel		martensitic	13	820	240	00-70	0.00-0.14	0.1-0.10	0.12-0.2	0.14-0.22	0.10-0.24
М	stainless steel and cast steel		austenitic, duplex	14	600	180	55-65	0.06-0.14	0.08-0.16	0.1-0.18	0.12-0.2	0.14-0.24
			ferritic / pearlitic	15		180						
	gray cast iron ((GG)	pearlitic / martensitic	16		260						
Κ	nodular cast ire	on (GGG)	ferritic	17		160	80-100	0.14-0.24	0.16-0.26	0.18-0.0.3	0.2-0.35	0.25-0.45
			pearlitic	18		250						
	malleable cast	iron	ferritic	19		130						
			pearlitic	20		230						
		fe based	annealed	31		200	35-45	0.06-0.12	0.08-0.16	0.1-0.18	0.12-0.2	0.12-0.22
	high		hardened	32		280	00 40	0.00 0.12	0.00 0.10	0.1 0.10	0.12 0.2	0.12 0.22
	temperature	Ni or Co	annealed	33		250						
	alloys	based	hardened	34		350	30-40	0.06-0.12	0.08-0.16	0.1-0.18	0.12-0.2	0.12-0.22
S			cast	35		320						
	titanium allove		pure	36	RM 400	190	35-45	0.06-0.12	0.08-0.16	0.1-0.18	0.12-0.2	0.12-0.22
titanium alloys			alpha+beta alloys, hardened	37	RM 1050	310	55-45	0.00-0.12	0.00-0.10	0.1-0.10	0.12-0.2	0.12-0.22

					Cutting		C	utting Diamet	er			
~	Material				Speed	Feed f, mm/rev						
ISO	No.			Material Condition	V _c , m/min	Ø 4 -5	Ø 5.1-6	Ø 6.1-8	Ø 8.1-10	Ø 10.1-12		
	1		<0.25% C	annealed	80-140							
	2	non-alloy	≥0.25% C	annealed	80-130							
	3	steel and cast steel,	<0.55% C	quenched and tempered	80-120			0.25-0.45	0.30-0.55	0.35-0.60		
	4	free cutting		annealed	70-110							
Ρ	5	steel	≥0.55% C	quenched and tempered	50-90	0.15-0.25	0.20-0.35					
	6	low alloy steel and cast steel (less than 5% of alloying elements)		annealed	80-120					0.35-0.55		
	7				70-110			0.25-0.40	0.30-0.50			
	8			quenched and tempered	50-90			0.23-0.40				
	9			tempered	40-70							
	10	high alloyed s	tool cast	annealed	50-90							
	11	steel, and too		quenched and tempered	40-80	0.15-0.20	0.20-0.30	0.25-0.35	0.30-0.45	0.35-0.50		
	15	arov oost iron		ferritic/pearlitic	80-140		0.25-0.45	0.35-0.55	0.40-0.60	0.45-0.65		
	16	grey cast iron		pearlitic	70-120		0.25-0.45	0.35-0.55	0.40-0.60	0.45-0.65		
V	17	nodular cast i	ron	ferritic	80-120	0.20-0.30						
	18	nodular cast iron		pearlitic	70-110	0.20-0.30	0.20-0.40	030050	035055	0.40.0.00		
	19	malloablo.cac	tiron	ferritic	80-120		0.20-0.40	0.30-0.50	0.35-0.55	0.40-0.60		
	20	malleable cast iron		pearlitic	70-110							

Recommended Machining Conditions for SCCD-ACP Solid Carbide Drills

Recommended Machining Conditions for SCD-AH5 Solid Carbide Drills

~				c		Cutting Speed	Feed v	Feed vs. Drill Diameter (mm/rev)			
ISC	Material Hardness		Material No.	V _c (m/min)	Ø 3-5	Ø 5.1-8	Ø 8.1-12				
	hardened steel	50-55 HRC	38	25-40	0.04-0.07	0.05-0.08	0.06-0.10				
Н	hardened steel	56-60 HRC	39	15-25	0.03-0.06	0.04-0.07	0.05-0.08				
	hardened steel	61-70 HRC	39	10-15	0.02-0.04	0.03-0.05	0.03-0.05				

Materials over 50 HRC must be used with external cooling while machining.

Use of semi-synthetic or emulsion with more than 6% oil concentration is highly recommended to extend tool life and hole quality.

Problem	Cause	Solution
chipping on the chisel edge	Poor clamping of the chuck.	Check the clamping. Use hydraulic clamping chuck, MAXIN power chuck or a shrink system.
	Unsuitable cutting conditions.	Decrease feed, increase coolant pressure.
	Chisel runout.Workpiece movement.	Check or replace the clamping adaptation.Increase workpiece chucking force.
chipping on the cutting edges / built-up edge	Poor clamping of the chuck.	Check the clamping. Use hydraulic clamping chuck, MAXIN power chuck or a shrink system.
	Unsuitable cutting conditions.	Increase cutting speed, reduce feed rate.
	 Insufficient coolant. 	Check cooling lubricant. Increase coolant pressure. In the case of external coolant supply, improve jet direction and add cooling jets.
	Rough application.	Reduce feed rate by 30-50% during entry and exiting.
excessive wear on the cutting corners	 Insufficient coolant. 	Check cooling lubricant. Increase coolant pressure. In the case of external coolant supply, improve jet direction and add coolant jets.
	Large runout.	 Check if the runout is within 0.02 mm T.I.R. (radial & axial)
	Unsuitable cutting conditions.	Reduce cutting speed, increase feed.
	Rough application.	• Reduce feed rate by 30-50% during entry and exit.
	Poor clamping of the chuck.	Check the clamping. Use hydraulic clamping chuck, MAXIN power chuck or a shrink system.
chipping on the lands	Workpiece movement.Insufficient coolant.	 Increase workpiece chucking force. Check cooling lubricant. Increase coolant pressure. In the case of external coolant supply, improve jet direction and add coolant jets.
	Wrong drill.	Check drill type, drilling depth, cooling system and workpiece material.
	Unsuitable cutting conditions.	Increase feed. When spot drilling, reduce feed.

SOLID-DRILL Troubleshooting

Problem	Cause	Solution
hole diameter out of tolerance	Unsuitable cutting conditions.	 If hole size is too large, increase cutting speed or reduce feed. If hole size is too small, reduce cutting speed or increase feed.
	 Poor clamping of the chuck. 	Check the clamping. Use hydraulic clamping chuck, MAXIN power chuck or a shrink system.
	Large runout.	Make sure that the drill's runout is within 0.02 mm (radial & axial).
	Worn out center point (chisel).	Regrind cutting edge or replace the drill.
hole not straight	Insufficient chip evacuation.	Use pecking cycle.
	 Poor clamping of the chuck. 	Check the clamping. Use hydraulic clamping chuck, MAXIN power chuck or a shrink system.
	 Workpiece rigidity. Worn out drill center point (chisel). 	Increase workpiece chucking force.Regrind cutting edge.
	Unsuitable cutting conditions.	Increase feed. When spot drilling, reduce feed.
drill breakage	Poor clamping of the chuck.	Check the clamping. Use hydraulic clamping chuck, MAXIN power chuck or a shrink system.
	Workpiece movement.Wrong drill.	 Increase workpiece chucking force. Check drill type and drilling depth, cooling system and workpiece material.
	 Insufficient coolant. 	 Check cooling lubricant. Increase coolant pressure. In the case of external coolant supply, improve jet direction and add cooling jets.
	Unsuitable cutting conditions.	Reduce feed.
	Worn out drill center point (chisel).	Regrind cutting edge.
	 Insufficient chip evacuation. 	Use pecking cycle.

Problem	Cause	Solution
chipping on the cutting corners	Poor clamping	Check the clamping and adaptation.
comers	of the chuck.	Use hydraulic clamping chuck, MAXIN
		power chuck or a shrink system.
	 Workpiece movement. 	
	Wrong drill.	Check drill type and drilling depth,
		cooling system and workpiece
		material. Possibly use longer drill.
	Insufficient coolant.	Check cooling lubricant. Increase
		coolant pressure. In the case of
		external coolant supply, improve jet
		direction and add cooling jets.
	Unsuitable cutting	Check cutting parameters, and
	conditions.	possibly reduce feed.
	Worn out or broken	Replace drill or regrind cutting edge.
	cutting corner.	
problem: burrs on exit	Unsuitable cutting	Reduce feed by 30-50% during exit.
	conditions.	
	Worn out drill.	Replace drill.
1///////		
rough surface finish	Unsuitable cutting	Adjust feed to improve chip flow.
Ra	conditions.	
	Large runout.	Make sure that the drill's runout is
		within 0.02 mm (radial & axial).
	Chip jamming.	Reduce cutting speed.
	• .	Increase coolant pressure.
	• .	Apply pecking procedure.
deviation of hole position	Large runout.	Make sure that the drill runout is
\rightarrow		within 0.02 mm (radial & axial).
()	 Poor stability. 	Check and improve drill and
\forall		workpiece clamping rigidity.
I	Rough application.	When drilling hard materials or
		sloped surfaces, reduce feed by
		30-50% during entrance.
	• .	Use a short pilot drill with 140° point angle.

Pre-Thread Drilling with Chamfering

Pre-Thread Drilling / Drilling with Chamfering Drilling Stepped Holes

A large number of drilled holes require chamfering. In some cases, the profile of the required hole is more complex and includes chamfering and counterboring. A preparatory hole for threading is one of the common uses for these holes. Despite the fact that cutting internal threads is not a complex technological operation, there are some features for the preparation of this procedure. In most cases, before threading, it is necessary to drill a pre-hole with a chamfer. Sometimes counterboring is also required in addition to chamfering.

Therefore, it is recommended to accurately determine the dimensions of the pre-hole for threading and choose the right tool, for which special tables of drill diameters for threading are used. For each type of thread, it is required to use the appropriate tool and calculate the diameter of the preparation hole. Keep in mind that if the diameters of the pre-holes intended for threading are chosen incorrectly, this can lead not only to poor quality threads but also to breakage of the threading tool. An additional example of the use of holes with chamfering, or holes with chamfering and counterboring, are holes for screws, rivets, etc.

	Hole with Chamfering	Hole with Chamfering and Counterboring
Common Use		
Deburring	V	
Preparation for Threading	V	V
Flush Fastening for Bolts, Screws, Nuts, Etc.	V	V
Reduced Stress Concentration	V	
Bushing Placement	V	V
Cosmetic Enhancement	V	V

Combined Drills

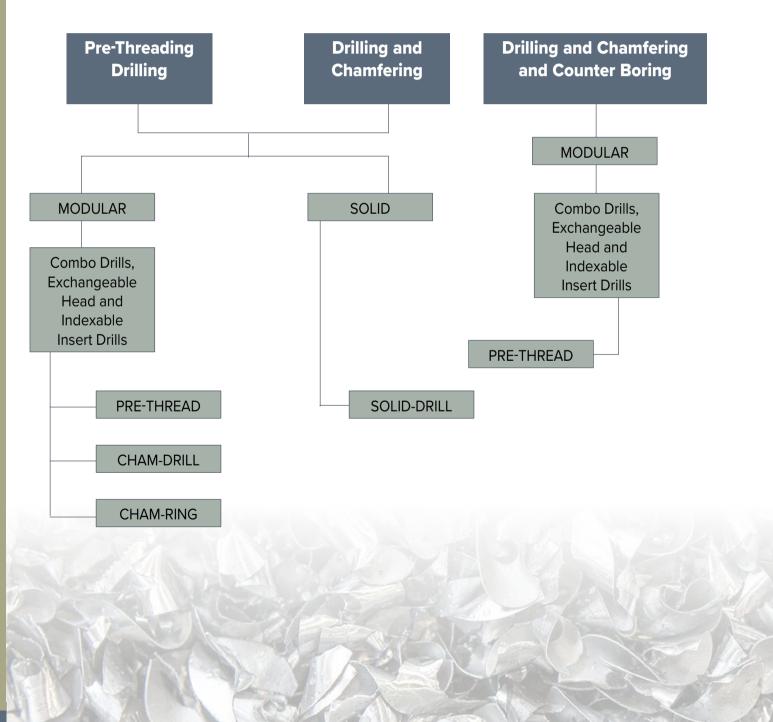
The most optimal solution for drilling holes with chamfering, or holes with chamfering and counterboring, is with a combined drill. The combined drill is designed for machining several different drilling operations with one drill.

Using a combined drill greatly simplifies the processing of holes with chamfering and the processing of more complex holes, including chamfering and counterboring.

The most obvious advantages of the combined drill are:

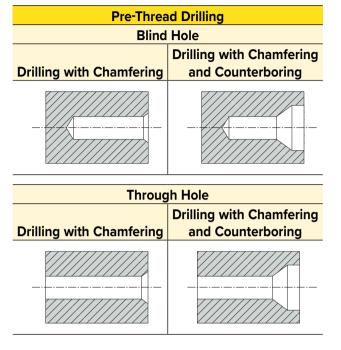
- Increasing productivity by reducing machine time, i.e., cancelling machine time required to change tools and reducing tool set-up time.
- Reducing required tool stock.

 The ability of drilling a more accurate hole that contains elements such as chamfering or chamfering and counterboring, which is a significant reduction in the coaxial deviations of the various hole elements due to removing axis movements of the table during regular tools exchange inside the machine.


The combined drill is a great option that does not change cutting tools but performs operations such as drilling, chamfering, and counterboring with one tool.

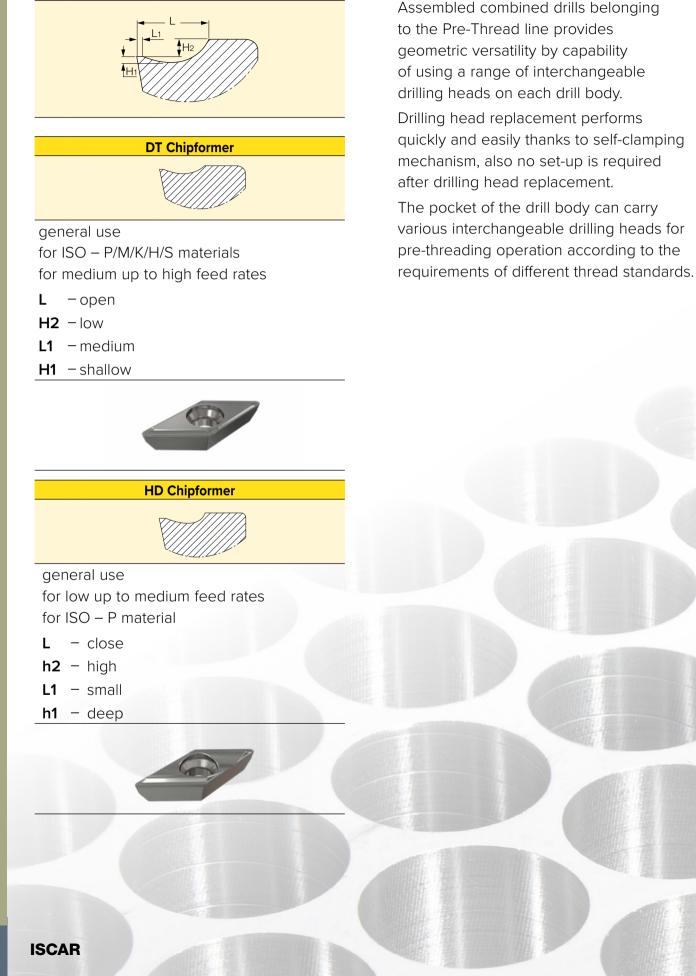
ISCAR Product Family for Pre-Thread Drilling

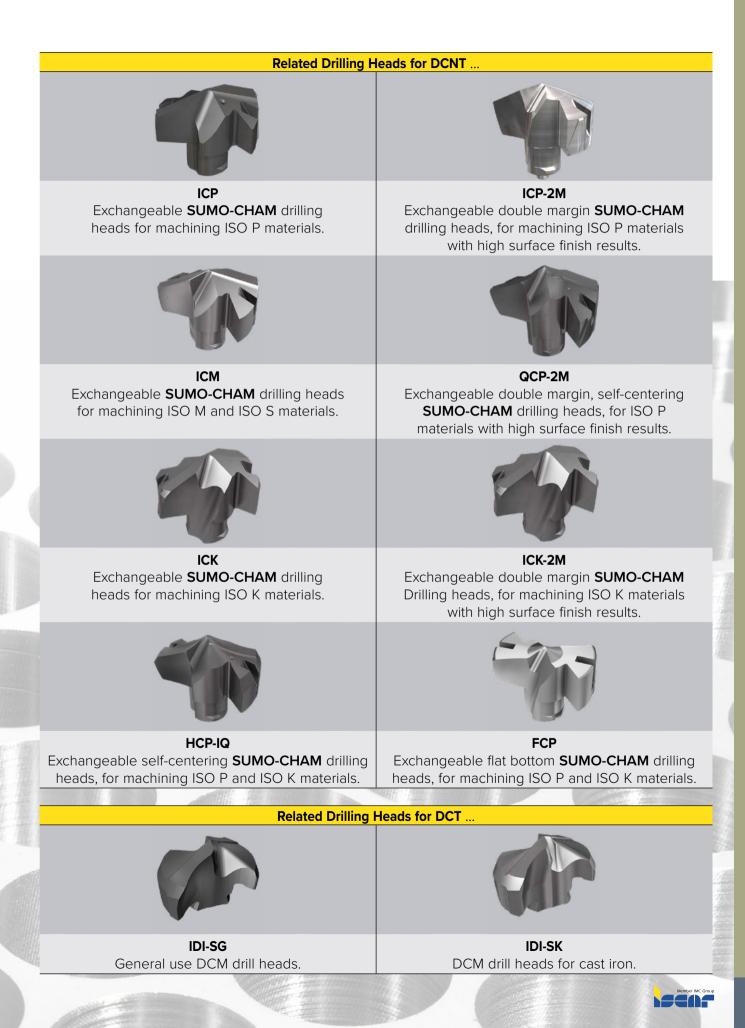
Drilling with Chamfering, and Drilling with Chamfering and Counterboring


ISCAR offers standard drills and special tools for efficient drilling of pre-threading holes, holes with chamfering, and holes with chamfering and counterboring.

Pre-Thread Assembled Combined Drills

Assembled combined drills belonging to the Pre-Thread line carry two unique indexable chamfering inserts and interchangeable drilling heads.

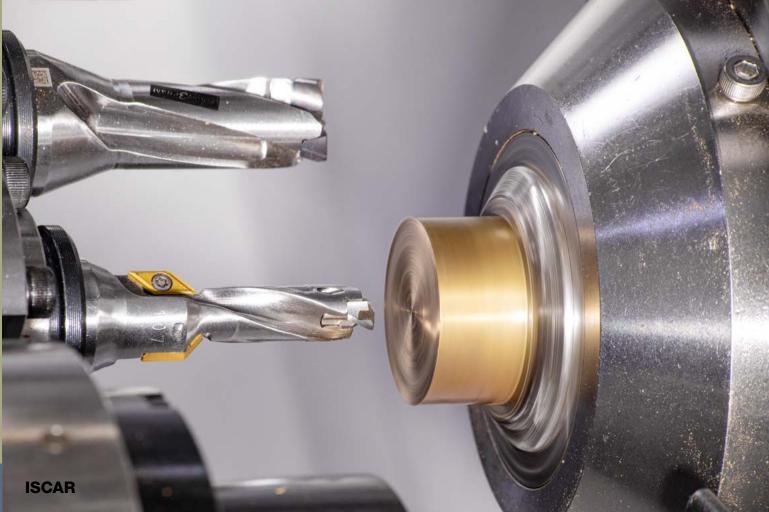




The indexable chamfering inserts designated AOMT ... are available with two types of chipformers DT and HD. The DT chipformer is suitable for machining all kinds of materials, while the HD chipformer is designed for machining low carbon steel and soft materials.

The indexable chamfering inserts placed symmetrically on the drill and cutting forces are balanced for optimal performance. This feature is especially essential in through hole application.

The indexable chamfering inserts were designed for chamfering and counterboring on a wide range of materials with optimal chip formation.


Assembled combined drills belonging to the Pre-Thread line exist in two variations: with straight flutes and with spiral flutes. Drill with straight flutes designated DCT ... and carry interchangeable **CHAM-DRILL** drilling heads. Drill with spiral flutes designated DCNT ... and carry interchangeable **SUMO-CHAM** drilling heads. Straight flute drills are designed with a central coolant channel, while spiral fluted drills are designed with spiral coolant channels.

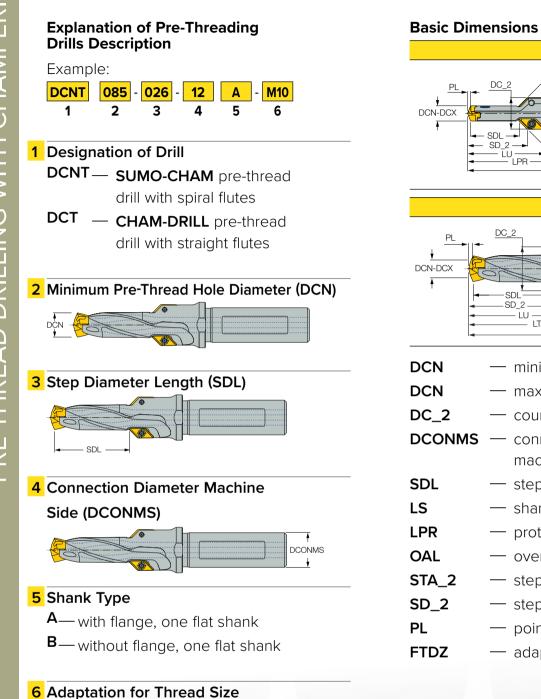
The Tables Below Provide Recommendations for Using the Assembled Combined Drills Belonging to the Pre-Thread Line.

DCT ..

Drill Designation	Dia. Range	M Thread	Head Dia.	MF Thread	Head Dia.	TR Thread	Head Dia.	M Helicoil Thread	Head Dia.
DCT 068-021-14B-M8	6.80-7.49	M8	6.8	MF8X0.75	7.20	TR10X3	7.49		
DC1 000-021-14D-1010	0.80-7.49			MF8X1	7.00				
DCT 085-026-14B-M10	8.30-8.99	M10	8.5	MF10X1	8.99	TR10X1.5	8.60	M8	8.40
	0.30-0.99			MF10X1.25	8.80				
		M12	10.2	MF11X1	10.00	TR12X2	10.20	M10	10.50
	10.0-10.99			MF12X1	10.99	TR14X4	10.50		
DCT 102-030-14B-M12				MF12X1.25	10.80				
				MF12X1.5	10.50				
	10.0.10.00	M14	12.0	MF13X1	12.00	TR14X2	12.20	M12	12.50
DOT 430 035 400 M44				MF14X1	12.99	TR16X4	12.30		
DCT 120-035-16B-M14	12.0-12.99			MF14X1.25	12.80				
				MF14X1.5	12.50				
		M16	14.0	MF14X1	14.00	TR18X4	14.30	M14	14.99
DCT 140-039-18B-M16	14.0-14.99			MF16X1	14.99				
				MF16X1.5	14.50				
DOT 475 042 200 M20	170 1700	M20	17.5			TR22X5	17.30		
DCT 175-042-20B-M20	17.3-17.99			MF20X2	17.99				
DCT 210-048-25B-M24	21.0-21.99	M24	21.0	MF22X1	21.00				

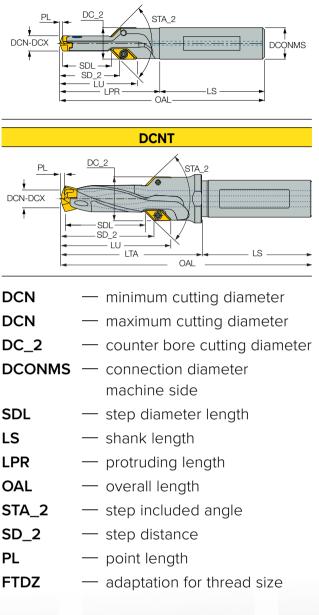
Inch Threads

Drill Designation	Dia. Range	UNF Thread	Head Dia.	UNC Thread	Head Dia.	UNC Helicoil Thread	Head Dia.	BSW Thread	Head Dia.	BSF Thread	Head Dia.
DCT 085-026-14B-M10	8.30-8.99	UNF3/8- 24	8.5			UNC5/16- 18	8.4				
DCT 102-030-14B-M12	10.0-10.99			13	10.8			BSW1/2- 12	10.5	BSF1/2-16	10.99
DCT 120-035-16B-M14	12.0-12.99			UNC9/16- 12	12.3					BSF9/16- 16	12.50
DCT 140-039-18B-M16	14.0-14.99	UNF5/8- 18	14.5								
DCT 175-042-20B-M20	17.3-17.99	UNF3/4- 16	17.5								


Inch Threads

Drill Designation	Dia. Range	NPT Thread	Head Dia.		Head Dia.	BSP Thread	Head Dia.	UNEF Thread	Head Dia.	UNJF Helicoil Thread	Head Dia.	
DCT 085-026-14B-M10	8.30-8.99	NPT1/8- 27	8.5			G1/8-28	8.8	UNEF3/8- 32	8.7	UNJF3/8- 24	8.6	
DCT 102-030-14B-M12	10.0-10.99			BSF1/2-16	10.99							
DCT 120-035-16B-M14	12.0-12.99			BSF9/16- 16	12.50							
DCT 140-039-18B-M16	14.0-14.99	NPT3/8- 18	14.5					UNEF5/8- 24	14.8	UNJF5/8- 18	14.5	
DCT 175-042-20B-M20	17.3-17.99	NPT1/2- 14	17.5					UNEF3/4- 20	17.8			

Drill Designation	Dia. Range	M Thread	Head Dia.	MF Thread	Head Dia.	TR Thread	Head Dia.	M Helicoil Thread	Head Dia.
DCNT 068-021-12A-M8	6.5-6.99	M8	6.8						
DCNT 085-026-12A-M10	8.5-8.99	M10	8.5	MF10x1	8.99	TR10x1.5	8.6		
	0.5-0.33		0.5	MF10x1.25	8.8		0.0		
				MF11x1	10.0	TR12x2	10.2		
DCNT 102-030-16A-M12	10.0-10.99	M12	10.2	MF12x1	10.99		10.2	M10	10.5
	10.0-10.33			MF12x1.25	10.8	TR14x4	10.5		10.5
				MF12x1.5	10.5				
				MF13x1	12.0	TR14x2	12.2	N410	
DCNT 120-035-16A-M14	12.0-12.99	N /1 /	12.0	MF14x1	12.99				12.5
DCN1 120-035-16A-14114	12.0-12.99	M14		MF14x1.25	12.8		10.0	M12	12.5
				MF14x1.5	12.5	TR16x4	12.3		
					14.0				
DCNT 140-039-16A-M16	14.0-14.99	M16	14.0	MF16x1	14.99	TR18x4	14.3	M14	14.99
				MF16x1.5	14.5				
DCNT 175-042-20A-M20	17.0-17.99	M20	17.5	MF20x2	17.99	TR22x5	17.3		
DCNT 210-048-25A-M24	21.0-21.99	M24	21.0	MF22x1	21.0				


Drill Designation	Dia. Range	UNF Thread	Head Dia.	UNC Thread	Head Dia.	BSW Thread	Head Dia.	BSF Thread	Head Dia.
DCNT 068-021-12A-M8	6.5-6.99								
DCNT 085-026-12A-M10	8.5-8.99	UNF3/8-24	8.5						
DCNT 102-030-16A-M12	10.0-10.99			UNC1/2-13	10.8	BSW1/2-12	10.5	BSF1/2-16	10.99
DCNT 120-035-16A-M14	12.0-12.99			UNC9/ 16-12	12.3			BSF9/16-16	12.5
DCNT 140-039-16A-M16	14.0-14.99	UNF5/8-18	14.5						
DCNT 175-042-20A-M20	17.0-17.99	UNF3/4-16	17.5						
DCNT 210-048-25A-M24	21.0-21.99								

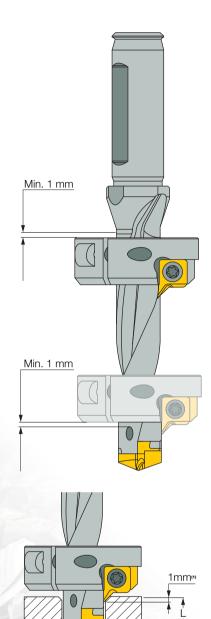
Drill Designation	Dia. Range	NPT Thread	Head Dia.	BSP Thread	Head Dia.	UNEF Thread	Head Dia.	UNJF Helicoil Thread	Head Dia.
DCNT 068-021-12A-M8	6.5-6.99								
DCNT 085-026-12A-M10	8.5-8.99	NPT1/8-27	8.5	G1/8-28	8.8	UNEF3/8-32	8.7	UNJF3/8-24	8.6
DCNT 102-030-16A-M12	10.0-10.99								
DCNT 120-035-16A-M14	12.0-12.99								
DCNT 140-039-16A-M16	14.0-14.99	NPT3/8-18	14.5			UNEF5/8-24	14.8	UNJF5/8-18	14.5
DCNT 175-042-20A-M20	17.0-17.99	NPT1/2-14	17.5			UNEF3/4-20	17.8		
DCNT 210-048-25A-M24	21.0-21.99								

Basic Dimensions of Pre-Threading Drills

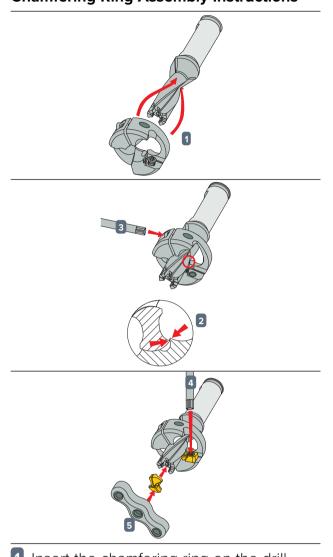
DCT

Chamfering Ring

ISCAR's chamfering rings designated RING DCM... are additional elements that turn the **CHAM-DRILL** line drills to combined tools for drilling and countersinking. The chamfering rings are easily assembled on the **CHAM-DRILL** line drills, creating an efficient and rigid tool. **ISCAR**'s chamfering rings increase the versatility of **CHAM-DRILL** line drills and save time spent on small chamfering and deburring operations. The ring carries an indexable insert designated XOGX ... for chamfering with an angle of 45° and recommended depth of up to 2 mm.


ISCAR's chamfering rings, RING DCM..., assembled on **CHAM-DRILL** line drills with a diameter range of 10 to 20 mm. The protrusion of the drill inserted into the chamfering ring can be adjusted for various drilling depths in blind and through hole (table 3.4.1).

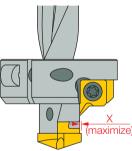
Chamfering Ring - Position Range (mm)


Drill	Drill Body 3xD	Drill Body 5xD
Diameter	L (min-max)	L (min-max)
10	8-16	15-36
10.5	8-18	17-39
11	8-19	18-41
11.5	8-21	20-44
12	8-22	21-46
12.5	8-24	23-49
13	8-25	24-51
13.5	8-27	26-54
14	9-29	28-57
14.5	9-30	29-60
15	9-31	30-60
16	9-33	32-65
17	11-35	34-69
18	11-38	34-74
19	11-42	41-80
20	11-45	44-85

Note: the "L" dimension shown is relative to the common 1mm chamfer. For other sizes, adjust "L" accordingly.

ISCAR

Chamfering Ring Assembly Instructions


- Insert the chamfering ring on the drill body and slide to the desired position⁽¹⁾.
- 2 Rotate the ring clockwise until the stopper engages the flute edge.
- 3 Tighten the ring screw according to the maximum tightening torque indicated on RING DCM spare parts.
- 4 Mount the chamfering insert.
- 5 Mount the **CHAM-DRILL** head.

Note that before drilling it is recommended to ensure:

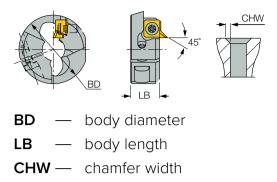
- There is a very small gap between the chamfer insert and the drill body, without direct contact (i.e., the chamfer insert should not be in contact with the drill body).
- The cutting edge point (45°) is at the same level as the flute edge.

Recommendation for Better Stability

- 2 Use 3xD drill instead of 5xD, if possible.
- 3 Mount the chamfering ring as close as possible to the drill shank.
- 4 For better chamfering insert life, apply a coolant to the chamfering insert, in addition to the internal and/or external coolant.
- 5 A wider gap "X" between the drill and the head size is preferred (i.e. for head 14.6 mm, use body of 14 mm rather than of 14.5 mm). A slightly larger "X" dimension can dramatically increase the chamfering insert life.

 ${}^{(\!\!\!\!\!\!\!\!\!\!\!)}$ The "L" dimension shown is relative to the common 1 mm chamfer. For other sizes, adjust "L" accordingly.

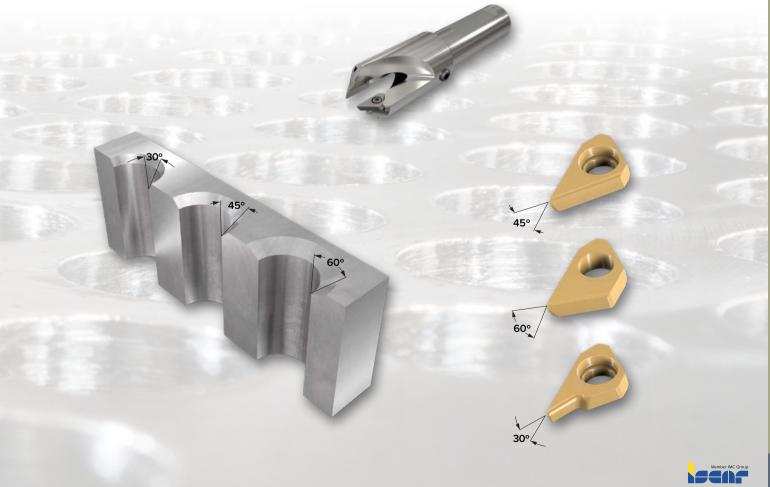
Explanation of Chamfering Ring Description


1 Designation

RING DCM — chamfering ring mounted on **CHAM-DRILL** line drills

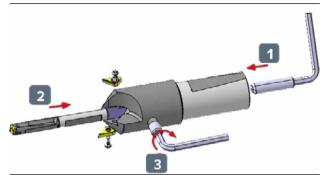
2 Minimum Hole Diameter (DCN)

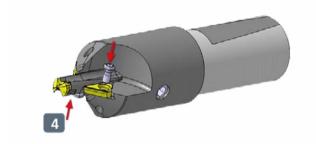
Basic Dimensions of the Chamfering Ring


Chamfering Holder

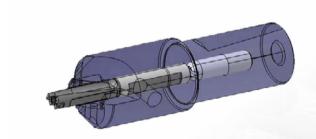
ISCAR's chamfering holders, designated **CHAM-RING** ... were designed to offer standard chamfering options for producing 30°, 45° and 60° chamfers around holes in the diameter range of 7.5 to 25.9 mm, using **ISCAR**'s standard **UNI-CHAM-DRILL** drill type.

CHAMRING

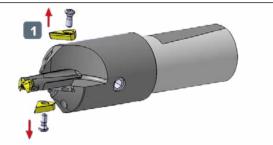

CHAM-RING Body Construction

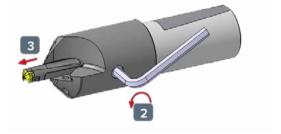

The **CHAM-RING** has two chamfering inserts designated XCGT ... that provide a balanced and smooth cut during the chamfering operation for blind and through hole applications. The unique design of two chamfering inserts on the standard **CHAM-RING** enables a combination operation of drilling and chamfering. A constant speed and feed can be maintained during both operations, resulting in high quality of both the hole and the chamfer. The projection of the **UNI-CHAM-DRILL** inserted into the **CHAM-RING** can be adjusted for various drilling depths (table 3.5.1) in blind and through hole applications for the standard 30°, 45° and 60° chamfers.

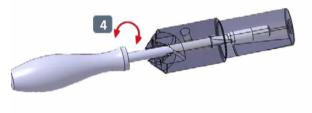
ᆀ þ DCN/DCX *SDL max min DCNS 3D **DCM 3.5D** Dril DCNS 5D Diameter DCN DCX L min L max L min L max L min L max DC.. 075 7.5 7.9 12.7 18.6 12.4 21.9 15.7 33.6 DC., 080 8 13.6 19.2 23 23.6 8.4 14 40.9 DC.. 085 8.5 8.9 12.3 21.1 15.1 26.6 18.7 38.1 DC.. 090 9 9.4 15.6 27.1 41.1 12.8 23.1 21.8 DC.. 095 9.5 9.9 12.2 22.8 17.2 29.2 42.2 26.8 DC.. 100 10.4 28.2 28.3 32.8 48.2 10 12.6 14.3 10.5 29.4 50.8 DC.. 105 10.9 13.9 29.8 14.4 31.7 DC., 110 11 31 53.4 11.4 14.4 31.4 18 34.7 DC.. 115 11.5 11.9 14.1 31.4 15.6 33.1 34.0 54.4 DC.. 120 12 12.4 19.2 35.2 15.1 33.4 36.9 57.3 DC.. 125 12.5 12.9 37.3 15.6 35.8 19.3 40.6 60.8 DC.. 130 13.4 38.4 64.1 13 17.8 37.6 21.4 43.8 DC.. 135 13.5 13.9 16.1 38.2 19.5 39.5 42.8 65.2 DC.. 140 14 14.4 18.0 40.8 21.5 41.5 46.0 69.3 DC.. 145 14.5 14.9 16.4 39.7 20.1 42.1 45.3 68.7 DC.. 150 15 15.9 18.5 41.9 25.2 43.7 48.5 71.9 DC.. 160 16 16.9 26.2 51.6 26.3 49.3 58.2 83.6 DC.. 170 17 17.9 49.0 52.4 83.0 22.6 28.4 56.6 DC.. 180 18 18.9 25.1 52.5 31 57 61.1 88.5 DC., 190 19 19.9 58.3 63.3 66.3 96.3 28.3 32.3 DC.. 200 20 20.9 38.3 68.4 36.6 67.1 78.3 108.3 DC.. 210 21 75.9 21.9 33.9 63.3 105.3 DC.. 220 22 22.9 37.3 66.7 81.3 110.7 DC.. 230 23 23.9 40.7 86.7 116.1 70.1

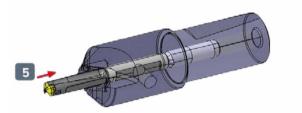

Chamfering Holder - Position Range (mm)

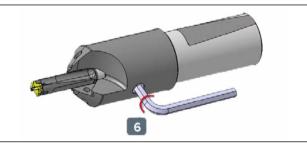
CHAM-RING Assembly Instructions

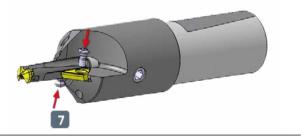


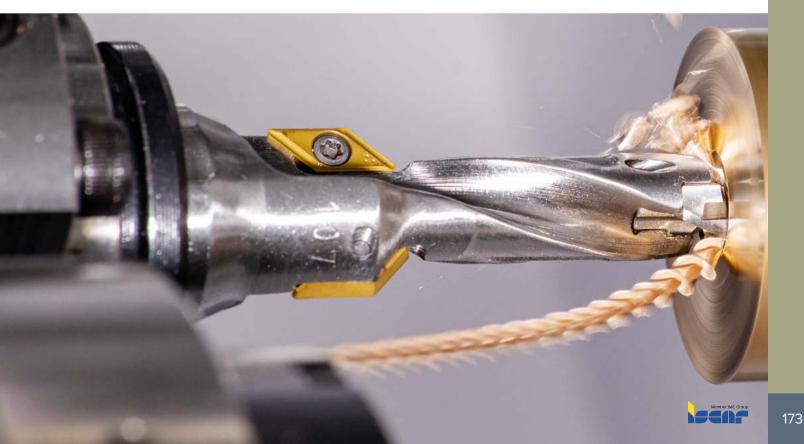


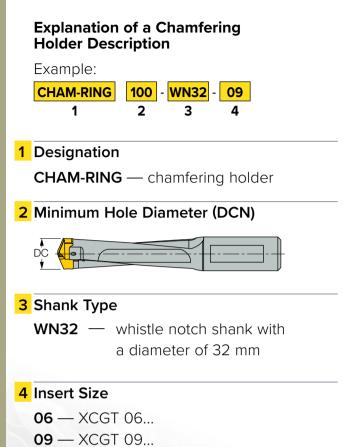

Steps:


- 1 Unscrew the **CHAM-RING** side locking and chamfering insert screws.
- 2 Insert the proper UNI-CHAM-DRILL into the CHAM-RING bore and push it against the back adjustment screw.
- 3 Slightly tighten the side locking screw for initial contact with the **UNI-CHAM-DRILL** clamping surface.
- In order to achieve a symmetrical positioning of the chamfering inserts and to avoid edge fracturing, clamp the inserts gradually, alternating sides, before the final tightening. Ensure a tight clamping of the insert against the side walls of the UNI-CHAM-DRILL peripheral clearance guiding surfaces.
- 5 Clamp the **CHAM-RING** inside the drill's pocket.
- 6 Lastly, tighten the side clamping screw.
- 7 Clamp the required CHAM-DRILL head size into the UNI-CHAM-DRILL pocket.


Adjustment of UNI-CHAM-DRILL Protrusion




Steps:


- 1 Unscrew the chamfering insert screws.
- 2 Remove the chamfering inserts from their pockets.
- 3 Unscrew the **CHAM-RING** side locking screw.
- 4 Remove the UNI-CHAM-DRILL from the CHAM-RING holder.
- 5 Adjust the inner axial stopper screw to attain the required **UNI-CHAM-DRILL** projection, by inserting a flat screwdriver from the front or back of the **CHAM-RING** bore.
- 6 Insert the UNI-CHAM-DRILL into the CHAM-RING bore.
- Slightly tighten the side locking screw for initial contact with the UNI-CHAM-DRILL clamping surface.
- 8 Attach the chamfering inserts into both pockets and tighten their clamping screws. Ensure a tight clamping of the insert against the **UNI-CHAM-DRILL** peripheral clearance guiding surfaces.
- 9 Clamp the required CHAM-DRILL head size onto the UNI-CHAM-DRILL pocket.
- 10 Verify that the required projection has been achieved.

Recommendation for Better Stability

- It is recommended to use the same cutting conditions for both chamfering and drilling operations.
- 3 For optimal chip formation and to prolong chamfering insert edge life, it is recommended to use external coolant directed to the chamfering inserts, in addition to the CHAM-DRILL's internal coolant.
- 4 The **UNI-CHAM-DRILL** projection should not be adjusted beyond the peripheral clearance guide surfaces on the **UNI-CHAM-DRILL** flutes.
- 5 The chamfering insert screws should not be tightened before the initial tightening of the CHAM-RING side clamping screw. Incorrect drill orientation can lead to breakage of the chamfering inserts.

- 6 In case vibrations occur during the chamfering operation, it is recommended to change the adapter to a more rigid one. If the vibrations continue, reduce the speed and increase the feed (in the chamfering operation only). This will reduce vibration without reducing productivity.
- 7 In case vibrations occur during the chamfering operation in a through hole application, it is recommended to reduce the speed.
- 8 The recommended chamfer size should not be exceeded.
- 9 Chamfering inserts should not be used for counterboring.
- 10 When machining the maximal chamfer size, the recommended cutting parameters must be reduced by 20%.
- 11 The chamfer size gets smaller proportionally when a larger CHAM-DRILL head is used. The maximal chamfer size is obtained when using the smallest CHAM-DRILL head.

DCN/DCX	LPR DE Whistle notch shank
DCN	— drilling diameter minimum
DCX	— drilling diameter maximum
DCONWS	 — connection diameter
	workpiece side
DF	— flange diameter
DC	— cutting diameter
LPR	— protruding length
LS	— shank length
DCONMS	— connection diameter
	machine side

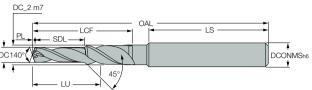
Basic Dimensions of Chamfering Holder

SOLID-DRILL Solid Carbide Combined Drills

The ultimate solution for machining pre-threading small diameter holes is the use of solid carbide combined drills. Drills belonging to the **ISCAR SOLID-DRILL** line and described as SCDT ...-M... (Solid Carbide Drill Thread with corresponding M thread size) in the range of 2.5-8.5 mm, which are compatible with ISO M thread standard "M3" to "M10" pre-thread hole dimensions. The dimensions of the SCDT ...-M... solid carbide pre-thread drills are designed according to DIN 6537 and the step length are according to DIN 8378. **ISCAR**'s solid carbide combined drills are capable of machining holes with chamfer or counterbore holes in one operation. They provide maximum hole quality, reliable performance, and economic output.

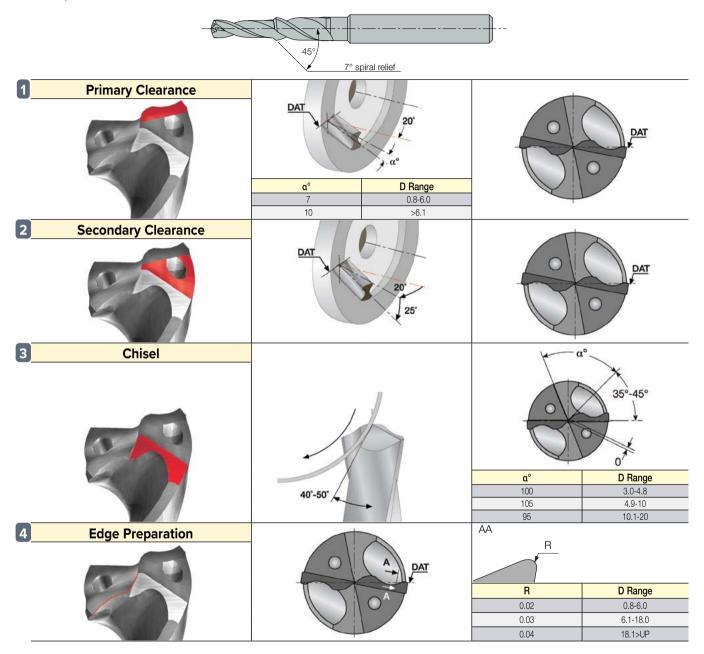
SCDT ...-M... Drills - Main Design Characteristics:

- Internal coolant channels
- "m7" outer cutting drill point and step diameter tolerance
- Round shank according to "h6" tolerance
- Right-hand cut
- 140° head point angle
- 30° spiral flute helix
- 45° step
- Standard back taper
- Reinforced web thickness
- Straight cutting edge and pinpointed chisel geometry for ISO - P, M, K materials machining
- Submicron IC08 substrate with 10% cobalt content
- Latest IC900 TiAIN PVD coated grade


Recommendation for Better Stability

- 1 Use external coolant in addition to the SCDT ...-M... internal coolant for achieving prolonged edge life.
- 2 Use pre-thread solid carbide drills in rotating or stationary applications with a maximum of 0.02 mm outer cutting points or chisel runout for optimal performance. Larger runout will influence drill performance and hole quality.
- 3 In case of a stationary application, clamp the drill in an orientation that directs both outer cutting points parallel to the machine's X-axis.
- 4 On stationary (lathe) applications, if there are misalignment problems use alignment devices such as the **ISCAR** /ETM GYRO device.
- 5 The SCDT ...-M... drills are recommended to be clamped into **ISCAR** tooling systems such as:
 - **SHORT-IN** collet chuck adapters with AA super precision
 - Power chuck adapters
 - Hydraulic adapters
 - Shrink collets or adapters

Combined Drills Description	Drills with C
Example:	DC_2 m7
SCDT 025 - 009 - 060 - M3 1 2 3 4 5	
Designation	<u>→</u> LU
SCDT — Solid Carbide Drill Thread	DC
2 Drill Diameter (DC)	DC – SDL –
	DCONMS -
3 Step Diameter Lendth (SDL)	DC_2 -
	PL –
	LU –
	LCF –
Shank Size (DCONMS)	OAL –
	LS –
5 For Thread Diameter Size	


of Solid Carbide Geometry

DC	— drilling diameter
SDL	— step diameter maximum
DCONMS	— connection diameter
	machine side
DC_2	— drilling diameter
PL	— point length
LU	— usable length
LCF	— length chip flute
OAL	— overall length
LS	— shank length

SOLID-DRILL Regrinding Instructions

The solid carbide combined drills can be re-sharpened and re-coated at least 10 times.

Notes:

ISCAR

- Recommended for each grinding operation: rotate the drill 180° and repeat the grinding procedure.
- Grinding wheel recommended specifications:
 - Diameter grinding wheel: GA2.
 - Grinding wheel bond: Synthetic resin.
 - Grit size: 325/400 mesh (45/38µ).
 - Diamond concentration: C-75 (3.3 carat/cm³).
 - Cutting fluid emulsion 3%.

SOLID-DRILL Cutting Conditions

The main parameters of cutting conditions in drilling are cutting speed and feed. The value of cutting speed depends directly on the drilling depth while the value of feed directly depends on the drill diameter. The cutting conditions must be chosen in a way to save the tool from premature wear while considering maximum productivity. The table below shows the initial recommended cutting conditions.

					8	Ð.	bed	Feed (mm/rev) Vs. Drill Diameter				
ISO	Materi	al	Condition	Tensile Strength [N/mm ²]	Hardness HB	Material No. ⁽¹⁾	Cutting Speed V _c m/min	Ø3-5	Ø 5.1-8	Ø8.1-12	Ø12.1-16	Ø16.1-20
		<0.25% C	annealed	420	125	1	80-120	0.10-0.18	0.15-0.25	0.2-0.30	0.20-0.35	0.25-0.40
	non-alloy	≥0.25% C	annealed	650	190	2	80-110					0.25-0.40
	steel and cast steel, free	<0.55% C	quenched and tempered	850	250	3	70-100					
			annealed	750	220	4		0.10-0.20	0.15-0.28	0.2-0.35	0.20-0.38	0.25-0.42
	culling sleer	≥0.55% C	quenched and tempered	1000	300	5						
			annealed	600	200	6	70.00	0.10, 0.10		0 2 0 20		
Ρ	low alloy and c			930	275	7	70-90	0.10-0.18	0.15-0.25	0.2-0.30	0.20-0.35	0.25-0.40
	steel (less than		quenched and tempered	1000	300	8	60-80	0.10-0.18	0.15-0.25	0.2-0.30	0.20-0.35	0.25-0.40
	alloying eleme	ils)		1200	350	9			0.15-0.28			
	high alloyed ste	eel, cast	annealed	680	200	10	60-80	0.10-0.20	0.15-0.28	0.18-0.35	0.20-0.38	0.25-0.42
	steel and tool s		quenched and tempered	1100	325	11			0.12-0.20			
	stainless steel		ferritic / martensitic	680	200	12	25-75	0.04-0.10	0.05-0.15	0.05-0.18	0.08-0.20	0.10-0.20
	and cast steel		martensitic	820	240	13			0.05-0.15			
М	stainless steel and cast steel		austenitic, duplex	600	180	14	25-75	0.04-0.10	0.05-0.15	0.05-0.18	0.08-0.20	0.10-0.20
			ferritic / pearlitic		180	15	85-105	0.15-0.25	0.20-0.35	0.25-0.45	0.30-0.50	0.35-0.55
	gray cast iron (GG)	pearlitic / martensitic		260	16			0.20-0.35			
	nodular cast iron (GGG)		ferritic		160	17						
K			pearlitic		250	18	CE 00	040.0.00		0 0 0 0 0 0		0.00.0.45
	malleable cast iron		ferritic		130	19	65-80	0.12-0.20	0.15-0.25	0.20-0.35	0.25-0.40	0.30-0.45
			pearlitic		230	20						
			not hardenable		60	21	70-300	040.0.05				
	aluminum-wrou	ignt alloys	hardenable		100	22	70-200	0.10-0.25	0.15-0.35	0.25-0.45	0.30-0.50	0.35-0.55
		<100/ C:	not hardenable		75	23	70-300	0.07-0.18	0.12-0.25	0.20-0.35	0.25-0.45	0.30-0.50
	aluminum-	≤12% Si	hardenable		90	24						
	cast alloys	>12% Si	high temperature		130	25						
Ν		>1% Pb	free cutting		110	26						
	copper alloys		brass		90	27						
			electrolytic copper		100	28						
			duroplastics, fiber plastics			29						
	non metallic		hard rubber			30						
			annealed		200	31						
	high	Fe based	hardened		280	32						
	temperature		annealed		250	33						
s	alloys	Ni or Co	hardened		350	34						
5		based	cast		320	35						
			pure	RM 400		36						
	titanium alloys		alpha+beta alloys, hardened	RM 1050		37	15-35	0.02-0.07	0.04-0.10	0.06-0.12	0.08-0.15	0.08-0.18
			hardened		55 HRC	38	40-70	0.06-0.10	0.08-0.12	0.10-0.14	0.12-0.16	0.14-0.18
	hardened steel		hardened		60 HRC							
H	chilled cast iror	ı	cast		400	40						

As a starting value, the middle of the recommended machining range should be used, then (according to wear results), conditions can be changed in order to optimize performance.

• When using external coolant supply only, reduce cutting speed by 10%

• Use internal coolant supply when machining austenitic stainless steel

SOLID-DRILL Machining Conditions

Recommended Machining Conditions for Solid Carbide Drills D=0.8-2.9 mm

			-		B	€.		Feed (mm/rev) Vs. Drill Diameter				
ISO	Materia	al	Condition	Tensile Strength [N/mm ²]	Hardness HB	Material No. ⁽¹⁾	Cutting Speed V _c (m/min)	Ø0.8-1.4	Ø1.5-1.9	Ø 2-2.4	Ø2.5-2.9	
		<0.25% C	annealed	420	125	1	50-100	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
	non-alloy	≥0.25% C	annealed	650	190	2	40-100	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
	steel and cast steel, free	<0.55% C	quenched and tempered	850	250	3	40-85	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
	cutting steel		annealed	750	220	4	40-85	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
	g	≥0.55% C	quenched and tempered	1000	300	5	40-85	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
			annealed	600	200	6	40-75	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
Ρ	low alloy and ca			930	275	7	40-60	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
	steel (less than alloying elemen		quenched and tempered	1000	300	8	40-60	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
	and ying clemen	(3)		1200	350	9	40-60	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
	high alloyed ste	el, cast	annealed	680	200	10	30-50	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
	steel and tool st	teel	quenched and tempered	1100	325	11	30-50	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
	stainless steel		ferritic / martensitic	680	200	12	20-35	0.03-0.06	0.04-0.08	0.05-0.10	0.06-0.10	
	and cast steel		martensitic	820	240	13	20-35	0.03-0.06	0.04-0.08	0.05-0.10	0.06-0.10	
М	stainless steel and cast steel		austenitic, duplex	600	180	14	20-35	0.03-0.06	0.04-0.08	0.05-0.10	0.06-0.10	
	arov cost iron (CC)		ferritic / pearlitic		180	15	40-80	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
	gray cast iron (GG)		pearlitic / martensitic		260	16	40-70	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
к	nodular cast iron (GGG)		ferritic		160	17	40-95	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
	malleable cast iron		pearlitic		250	18	50-95	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
			ferritic		130	19	40-80	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
			pearlitic		230	20	40-80	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
	aluminum-wroug	abt allovs	not hardenable		60	21	80-150	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
	aluminum-wrought alloys		hardenable		100	22	80-150	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
	- 1	≤12% Si	not hardenable		75	23	80-150	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
	aluminum- cast alloys		hardenable		90	24	80-150	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
		>12% Si	high temperature		130	25	80-150	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
Ν		>1% Pb	free cutting		110	26	80-150	0.03-0.10	0.05-0.15	0.07-0.17	0.08-0.20	
	copper alloys		brass		90	27	50-150	0.05-0.12	0.07-0.15	0.08-0.18	0.09-0.18	
			electrolytic copper		100	28	60-160	0.05-0.15	0.07-0.18	0.08-0.20	0.09-0.22	
	non metallic		duroplastics, fiber plastics			29						
			hard rubber			30						
		Fe based	annealed		200	31	10-20		0.03-0.06			
	high		hardened		280	32	10-20		0.03-0.06			
	temperature	Ni or Co	annealed		250	33	10-20		0.03-0.06			
S	alloys	based	hardened		350	34	10-20		0.03-0.06			
			cast		320	35	10-20		0.03-0.06			
	titanium alloys		pure	RM 400		36	10-20		0.02-0.03			
				RM 1050		37	10-20		0.02-0.03			
	hardened steel		hardened		55 HRC	38	10-20		0.01-0.02			
н			hardened		60 HRC		10-20		0.01-0.02			
	chilled cast iron		cast		400	40	10-20	0.01-0.02			0.02-0.03	
	cast iron		hardened		55 HRC	41	10-20	0.01-0.02	0.01-0.02	0.02-0.03	0.02-0.03	

• For drill with lengh to diameter ratio larger than 6xD, reduce feed by 20%

• If the RPM exceeds 10,000, a dynamic balance should be done to the system

• Maximal radial and axial runout should not exceed 0.01 mm

• As a starting value, the middle of the recommended machining range should be used, then (according to wear results), conditions can be changed in order to optimize performance.

				£				Feed (mm/rev) Vs. Drill Diameter					
ISO	Mater	ial	Condition	Tensile Strength [N/mm²]	Hardness HB	Material No. ⁽¹⁾	Cutting Speed V _c m/min	Ø3-5	Ø 5.1-8	Ø8.1-12	Ø12.1-16	Ø 16.1-20	
	non allov	<0.25% C	annealed	420	125	1	80-120		î .			0.25-0.40	
	non-alloy steel and	≥0.25% C	annealed	650	190	2	80-110	0.10-0.18	0.15-0.25	0.2-0.30	0.20-0.35	0.25-0.40	
	cast steel,	<0.55% C	quenched and tempered	850	250	3	70-100						
	free cutting steel	≥0.55% C	annealed	750	220	4		0.10-0.20	0.15-0.28	0.2-0.35	0.20-0.38	0.25-0.42	
		≥0.33% C	quenched and tempered	1000	300	5							
			annealed	600	200	6	70-90	010 018	015 0 25	0 2 0 30	0.20-0.35	0.25.040	
Ρ	low alloy and steel (less that			930	275	7	70-90	0.10-0.16	0.15-0.25	0.2-0.30	0.20-0.35	0.23-0.40	
	alloying elem		quenched and tempered	1000	300	8	60-80	0.10-0.18	0.15-0.25	0.2-0.30	0.20-0.35	0.25-0.40	
	, , ,	,		1200	350	9	50-70	0.10-0.20	0.15-0.28	0.2-0.35	0.20-0.38	0.25-0.42	
	high alloyed s		annealed	680	200	10	60-80	0.10-0.20	0.15-0.28	0.18-0.35	0.20-0.38	0.25-0.42	
	steel and too	l steel	quenched and tempered	1100	325	11	50-70	0.10-0.15	0.12-0.20	0.14-0.25	0.16-0.30	0.18-0.32	
	stainless stee	9	ferritic / martensitic	680	200	12					0.08-0.20		
	and cast stee	-	martensitic	820	240	13	25-75	0.04-0.10	0.05-0.15	0.05-0.18	0.08-0.20	0.10-0.20	
M	stainless stee and cast stee		austenitic, duplex	600	180	14	25-75	0.04-0.10	0.05-0.15	0.05-0.18	0.08-0.20	0.10-0.20	
	aray cast iron		ferritic / pearlitic		180	15	85-105	0.15-0.25	0.20-0.35	0.25-0.45	0.30-0.50	0.35-0.55	
	gray cast iron	(66)	pearlitic / martensitic		260	16	75-90	0.15-0.25	0.20-0.35	0.25-0.45	0.30-0.50	0.35-0.55	
к	nodular cast iron (GGG)		ferritic		160	17							
K			pearlitic		250	18		012 0 20			0.25-0.40	0.20.045	
	malleable cast iron		ferritic		130	19	05-60	0.12-0.20	0.15-0.25	0.20-0.35	0.25-0.40	0.30-0.45	
			pearlitic		230	20							
	aluminum-		not hardenable		60	21	70-300	010 0 25					
	wrought alloy	'S	hardenable		100	22	70-200	0.10-0.25	0.15-0.35	0.25-0.45	0.30-0.50	0.35-0.55	
		<100/ Ci	not hardenable		75	23	70-300	0.07-0.18	0.12-0.25	0.20-0.35	0.25-0.45	0.30-0.50	
	aluminum- cast alloys	≤12% Si	hardenable		90	24							
N	cast anoys	>12% Si	high temperature		130	25							
Ν		>1% Pb	free cutting		110	26							
	copper alloys		brass		90	27							
			electrolytic copper		100	28							
			duroplastics, fiber plastics			29							
	non metallic		hard rubber			30							
			annealed		200	31							
	high	Fe based	hardened		280	32							
	temperature		annealed		250	33							
S	alloys	Ni or Co	hardened		350	34							
		based	cast		320	35							
			pure	RM 400		36							
	titanium alloys	S	alpha+beta alloys, hardened	RM 1050		37	15-35	0.02-0.07	0.04-0.10	0.06-0.12	0.08-0.15	0.08-0.18	
			hardened		55 HRC						0.12-0.16		
	hardened ste	el	hardened		60 HRC								
н	chilled cast in	on	cast		400	40							
	cast iron		hardened		55 HRC								

Recommended Machining Conditions for Solid Carbide Drills D=3.0-20.0 mm

As a starting value, the middle of the recommended machining range should be used, then (according to wear results), conditions can be changed in order to optimize performance.

• When using external coolant supply only, reduce cutting speed by 10%

Use internal coolant supply when machining austenitic stainless steel

Problem	Cause.	Solution.
Chipping on the chisel edge	Poor clamping of the chuck.	Check the clamping. Use hydraulic clamping chuck, MAXIN power chuck or a shrink system.
	Unsuitable cutting conditions.	Decrease feed, increase coolant pressure
	Chisel runout.Workpiece movement.	Check or replace the clamping adaptatioIncrease workpiece chucking force.
Chipping on the cutting edges / built-up edge	Poor clamping of the chuck.	Check the clamping. Use hydraulic clamping chuck, MAXIN power chuck or a shrink system.
	Unsuitable cutting conditions.	Increase cutting speed, reduce feed rate
	 Insufficient coolant. 	Check cooling lubricant. Increase coolant pressure. In the case of external coolant supply, improve jet direction and add cooling jets.
	Rough application.	Reduce feed rate by 30-50% during entry and exiting.
Excessive wear on the cutting corners	 Insufficient coolant. 	Check cooling lubricant. Increase coolant pressure. In the case of external coolant supply, improve jet direction and add coolant jets.
	Large runout.	Check if the runout is within 0.02 mm T.I.R. (radial & axial).
	Unsuitable cutting conditions.	Reduce cutting speed, increase feed.
	Rough application.	Reduce feed rate by 30-50% during entry and exit.
	Poor clamping of the chuck.	Check the clamping. Use hydraulic clamping chuck, MAXIN power chuck or a shrink system.
Chipping on the lands	• Workpiece movement.	Increase workpiece chucking force.
	Insufficient coolant.	Check cooling lubricant. Increase coolant pressure. In the case of external coolant supply, improve jet direction and add coolant jets.
	Wrong drill.	Check drill type, drilling depth, cooling system and workpiece material.
	Unsuitable cutting conditions.	 Increase feed. When spot drilling, reduce feed.

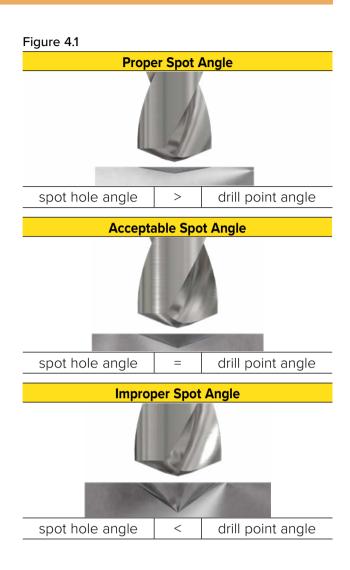
Problem	Cause.	Solution.
Hole diameter out of	Unsuitable cutting	If hole size is too large, increase
tolerance	conditions.	cutting speed or reduce feed.
		If hole size is too small, reduce
/////~		cutting speed or increase feed.
	Poor clamping	Check the clamping. Use hydraulic
///////////////////////////////////////	of the chuck.	clamping chuck, MAXIN power chuck or a shrink system.
	Large runout.	• Make sure that the drill's runout is within 0.02 mm (radial & axial).
	Worn out center point (chisel).	• Regrind cutting edge or replace the drill.
Hole not straight	 Insufficient chip 	Use pecking cycle.
	evacuation.	
	Poor clamping	Check the clamping. Use hydraulic
	of the chuck.	clamping chuck, MAXIN power
11/////////////////////////////////////		chuck or a shrink system.
///////////////////////////////////////	Workpiece rigidity.	Increase workpiece chucking force.
	Worn out drill center point (chisel).	Regrind cutting edge.
	Unsuitable cutting	Increase feed. When spot
	conditions.	drilling, reduce feed.
Drill breakage	Poor clamping	Check the clamping. Use hydraulic
	of the chuck.	clamping chuck, MAXIN power
		chuck or a shrink system.
	Workpiece movement.Wrong drill.	Increase workpiece chucking force.Check drill type and drilling depth,
	• wrong arill.	cooling system and workpiece material.
-	 Insufficient coolant. 	Check cooling lubricant. Increase
		coolant pressure. In the case of
		external coolant supply, improve jet
		direction and add cooling jets.
	Unsuitable cutting	Reduce feed.
	conditions.	
	Worn out drill center	Regrind cutting edge.
	point (chisel).	
	Insufficient chip	Use pecking cycle.
	evacuation.	

	_	
Problem	Cause.	Solution.
Chipping on the cutting corners	Poor clamping	Check the clamping and adaptation.
	of the chuck.	Use hydraulic clamping chuck, MAXIN
		power chuck or a shrink system.
	Workpiece movement.	Increase workpiece chucking force.
	Wrong drill.	Check drill type and drilling depth,
		cooling system and workpiece
	han a finite state of a last	material. Possibly use longer drill.
	Insufficient coolant.	Check cooling lubricant. Increase
		coolant pressure. In the case of
		external coolant supply, improve jet
		direction and add cooling jets.
	Unsuitable cutting	Check cutting parameters, and
	conditions.	possibly reduce feed.
	• Worn out or broken	• Replace drill or regrind cutting edge.
	cutting corner.	
Problem: Burrs on exit	Unsuitable cutting	• Reduce feed by 30-50% during exit.
	conditions.	
	• Worn out drill.	Replace drill.
Rough surface finish		A direct food to improve chip flow
	Unsuitable cutting	Adjust feed to improve chip flow.
	conditions.	Make aure that the drill's rupput is
	Large runout.	• Make sure that the drill's runout is
	Chin inmming	within 0.02 mm (radial & axial).
	Chip jamming.	Reduce cutting speed.Increase coolant pressure.
	• .	Apply pecking procedure.
Deviation of hole position	 Large runout. 	 Make sure that the drill runout is
		within 0.02 mm (radial & axial).
	Poor stability.	 Check and improve drill and
\rightarrow		workpiece clamping rigidity.
-(+)	Rough application.	When drilling hard materials or
\forall		sloped surfaces, reduce feed by
I		30-50% during entrance.
		 Use a short pilot drill with 140° point angle.
	J • •	

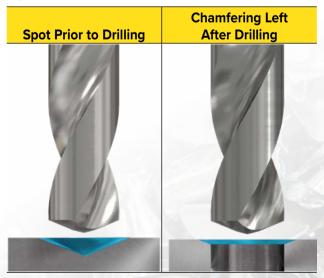
Spot Drilling and Chamfering

Spot Drilling

Drilling an accurate hole is not always easy and can often be accompanied with difficulties. Material behavior, surface irregularities and drill point geometry can be factors leading to inaccurate holes. The purpose of spot drilling is to create a small divot to correctly locate the center of a drill when initiating a plunge. A spot drill, when used correctly will greatly reduce the chances of drill walking and help provide a more efficient and accurate hole.


The initial contact of the drill with the workpiece is one of the important factors in drilling. In most cases, it is recommended that the central protrusion (chisel edge) of the drill is the first point of contact with the workpiece.

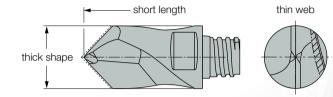
Therefore, the spot drill should have a slightly larger point angle than the drill used.


If the angle of the spot hole is smaller than the drill point angle, then the drill can be damaged due to shock loading when the outer portion of its cutting surface contacts the workpiece before the drill chisel edge.

Using a spot hole angle equal to the drill point angle is acceptable, but far from optimal.

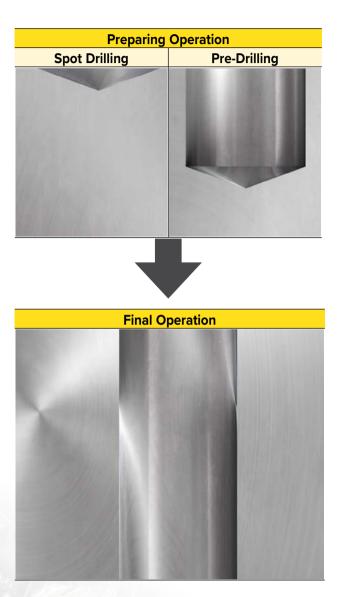
Figure 4.1 illustrates the described effect. For the top image named 'Proper Spot Angle', a drill is entering a previously drilled spot with a slightly larger angle than its point. For the image marked 'Improper Spot Angle', a drill is approaching an area with an angle that is far too small for its point. In addition to its primary purpose, the spot drill can be used for countersink, chamfer milling, and deburring operations, Figure 4.2.

Figure 4.2


Spot Drill

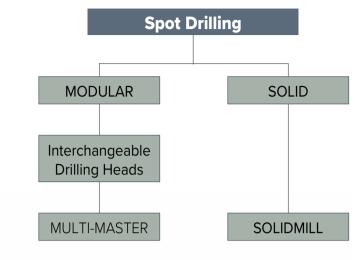
The spot drill has a short and thick shape. These small drills are designed to be extremely rigid so they can pinpoint the location of the required hole. The spot drill is also characterized by a thin web at the point to prevent drill walking during machining. It is important to know that a spot drill has no land or body relief and is not designed to drill past the depth of the point angle, which is just enough to drill a "detent" or "dimple" in the workpiece.

2


SA

3

Spot Drilling vs Pre-Drilling

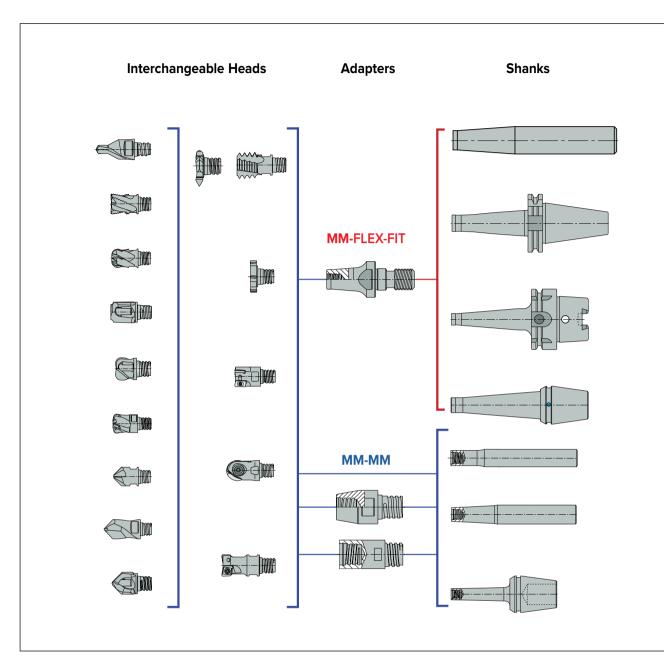

In some cases, the most common way to create a correct drill center location at the start of a plunge initiation is by spot drilling or pre-drilling. The dilemma often arises, which of these methods is preferable? Whether to create a pre-drilled hole using a short drill bit with a diameter similar to the required diameter or to create a dimple using a spot drill? The answer is not always clear and depends on various parameters such as: availability of the tool in stock, workpiece form, workpiece material, requested hole requirements, machine center accuracy, operation stability, etc. Therefore, to select the correct method, it is necessary to consider each specific case separately.

ISCAR

The ISCAR Product Family for Spot Drilling

ISCAR provides various solutions for spot drilling in the following design configurations: replaceable **MULTI-MASTER** heads and solid carbide drills. In addition to spot drilling, these tools are suitable for countersinking, milling chamfers and removing burrs.

MULTI-MASTER Solution for Spot Drilling


MULTI-MASTER is a modular system containing a family of tools with shanks and unique interchangeable cutting heads for a variety of machining applications, among others, for drilling operations.

The **MULTI-MASTER** design approach is based on a special thread profile system (T-thread) accurately located at a short, precise taper and face contact.

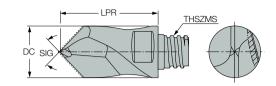
The **MULTI-MASTER** drilling head has a cutting part and a back connection with an external thread and taper that screws into a shank with the corresponding internal thread and taper. The drilling head is finally secured when the back face of the head's cutting part makes contact with the shank face.

This principle of coupling ensures straight and rigid clamping of a wide range of interchangeable heads. **MULTI-MASTER** tools meet the requirement of high accuracy because the geometry is finished by precise grinding, and the connection guarantees high concentricity within a very close limit. In addition, the tools are simple to operate since the heads are quickly replaced by easy rotation of an applied key. Moreover, they conform to strict repeatability requirements and replacing the heads does not require additional adjustment.

The basic concept of the **MULTI-MASTER** family is that a shank can carry heads of different shapes and accuracy, allowing dramatic increase of tool versatility and fewer needs for special tools. Resharpening of cutting edges is no longer needed because a worn-out cutting head is simply replaced. The family renders a possibility of numerous tools by an unlimited combination of the heads and the shanks, which answers any machining requirements and reduces procurement costs.

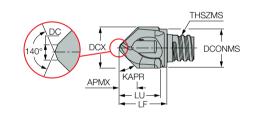
Features

Modular system reduces stock cost by using the same head with different shank options. Enables machining with larger overhang. Same head can be mounted on metric and inch combinations.


191

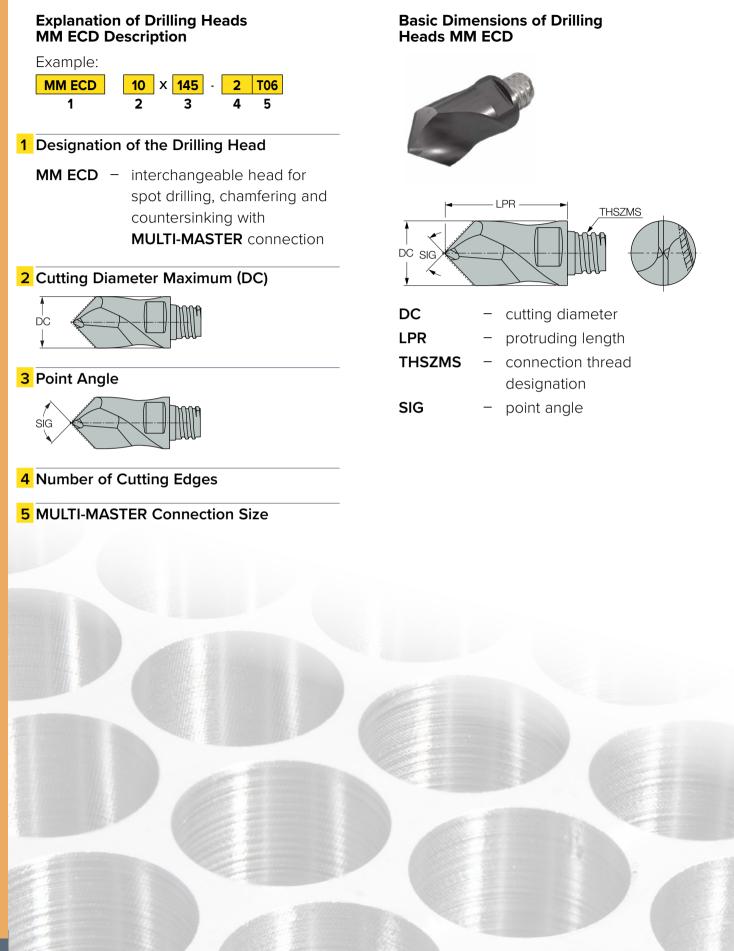
MULTI-MASTER for Spot Drilling

There are two kinds of **MULTI-MASTER** heads intended for spot drilling: MM ECD and MM HCD. Each type of drilling head has its own characteristics. The MM ECD heads were originally designed for spot drilling with various point angles, whereas MM HCD heads were designed with point angles that match countersink standards:


ANSI B18.3, ISO 5856, DIN EN 4072, IS 15437, MIL-STD-40007.

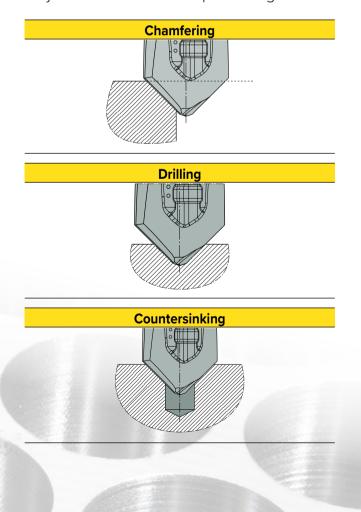
MM ECD

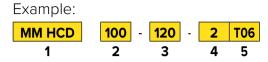
MM HCD

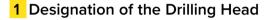

MM ECD

The interchangeable MM ECD heads with **MULTI-MASTER** connection are intended mainly for spot drilling to accurately locate a hole without using guide bushing or pre-drilling operations. In the **MULTI-MASTER** standard product line, heads MM ECD are available

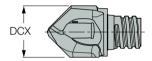
with a point angle of 90° and 145°.

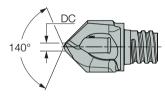

The MM HCD heads ware designed for a high chip load and suitable for most types of materials. Optional features of the MM ECD heads are milling chamfering, countersinking, and deburring.


ISCAR


MM HCD

In the MULTI-MASTER standard product line, MM HCD heads have point angles of 60°, 80°, 90°, 100° and 120°. Such a variety relates mainly to the requirements of different standards for chamfers and countersinks for fasteners. For example, metric countersunk screws require a 90° countersink, but American National countersunk screws require 80° and aerospace rivets 100°. A typical chamfer features a 45° chamfer angle, although 30° and 60° chamfers are also common. This multiformity of required generated profiles defines the functional capabilities of the heads and explains their variety. Although the MM HCD head was designed for a moderated chip load, this tool may also be suitable for spot drilling.

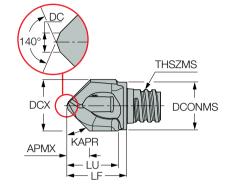

Explanation of Drilling Heads MM HCD Description



MM HCD – interchangeable 2 flute head for chamfering, countersinking and spot drilling with MULTI-MASTER connection

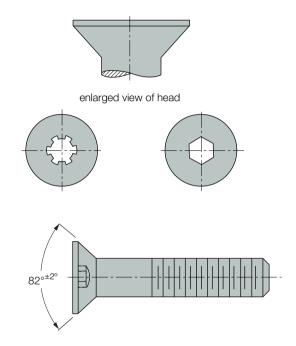
2 Cutting Diameter Maximum (DCX)

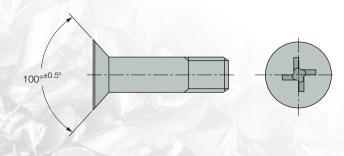
3 Point Angle



- 4 Number of Cutting Edges
- 5 MULTI-MASTER Connection Size

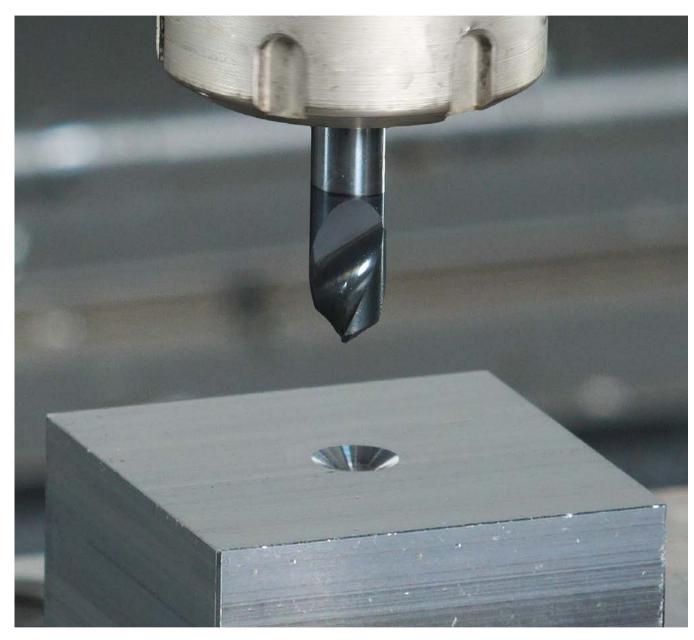
Basic Dimensions of Drilling Heads MM HCD




DC	_	cutting diameter
DCX	_	cutting diameter maximum
LF	_	functional length
LU	_	usable length
APMX	_	depth of cut maximum
DCONMS	-	connection diameter
		machine side
THSZMS	-	connection thread designation
KAPR	-	point angle

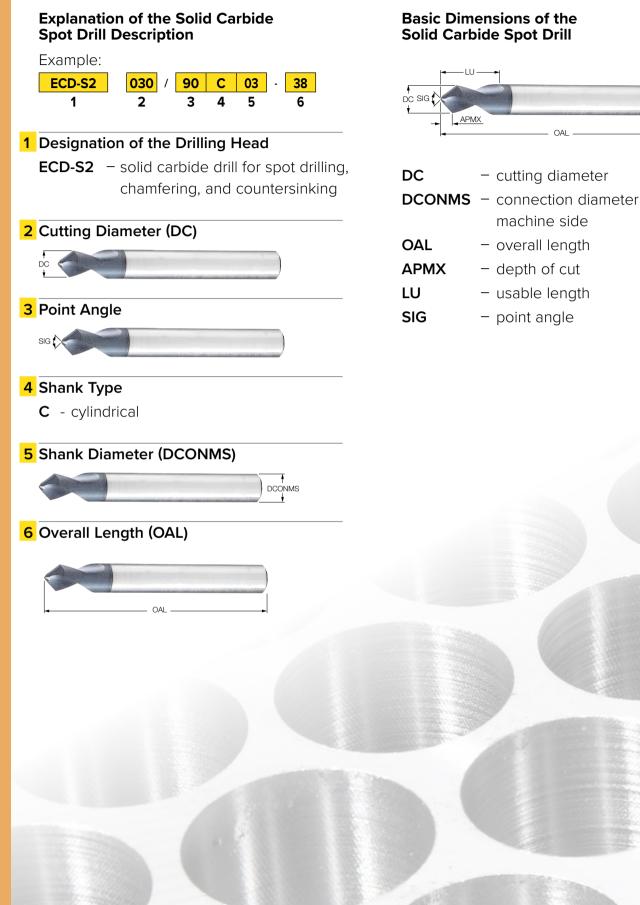
Usable Information

 MM HCD drilling heads with a point angle of 80° were designed mainly for the countersink according to standard ANSI B18.3 that define hexagon and spline socket flat countersunk head cap screws.

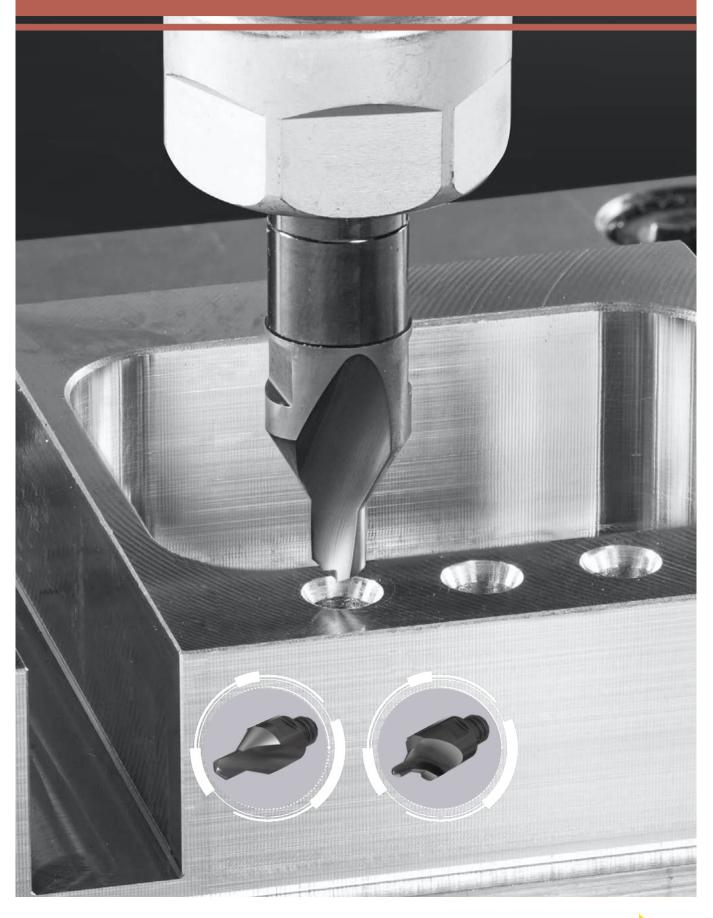


The MM HCD heads with a point angle of 100° were designed mainly for countersink holes for head cap screws according to ISO 5856, DIN EN 4072, IS 15437; and for rivets according to MIL-STD-40007. These heads can also be applied for machining countersink holes for general-use 100° flat countersunk head machine screws, in accordance with ANSI B18.6.3-1972. Most aircraft countersunk screws require a 100° angle countersink.

ISCAR


Solid Carbide Drill Solution for Spot Drilling

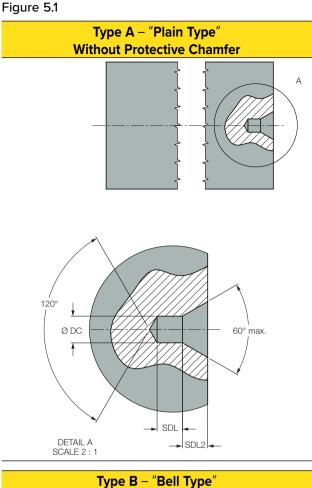
Tools among the most common for spot drilling are solid carbide drills.


The one-piece drill design combined with short flutes and overall length increases rigidity and strength while reducing drill wander. Solid Carbide NC Spotting Drills can be used at higher speeds and feeds for accurate spotting on NC/CNC machines. **ISCAR**'s solid carbide drill for spot drilling describes ECD-S2 ... and is available uncoated (ICO8) or AITiN coatings (IC900), covering most workpiece materials. Optional features of the ECD-S2 ... spot drills are milling chamfering, countersinking, and deburring.

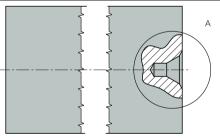
197

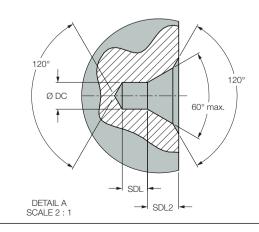
OAL

Center Drilling



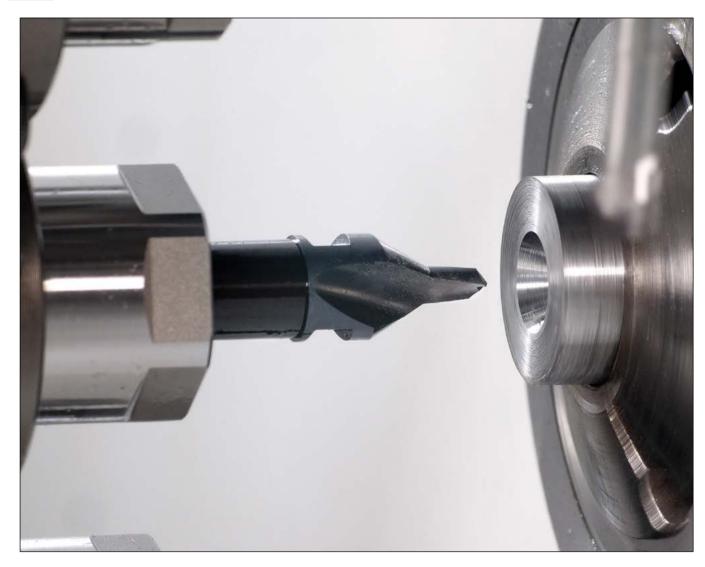
Center drilling is a type of mechanical processing to produce centering holes. Center holes are purely technological elements and are used to provide support for parts that are machined between centers or with tailstock. There are different types of center holes. The form and dimensions of the center holes depend on the design of the part, technological machining operations, and part dimensions.


The most common types of center holes are:


Type A – also called "plain type" is a center hole with a single 60-degree chamfer. Figure 5.1

Type B – also called "bell type" is a hole with 2 chamfers, a 60-degree chamfer and additionally a 120-degree chamfer at the start of the hole. The 120-degree chamfer protects the main 60-degree taper from damage and deformation that can cause inaccurate centering of the tailstock center. Such center holes are necessary for machining parts with a large number of operations. Figure 5.1

With Conical Protective Chamfer

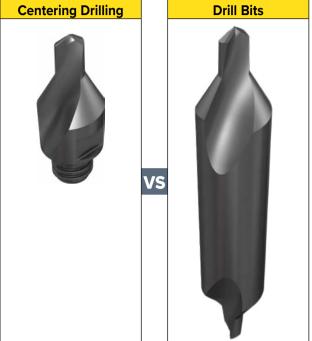


ISCAR

Center Drills

Center drills are profile drilling tools which were specially developed for machining centering holes. The center drill performs a combination of two operations simultaneously: drilling and countersinking. Therefore, the center drill is often referenced as a "combined countersink". Another name for the center drill, although rarely used, is a "Slocombe drill".

ISCAR center drills are designed according to DIN 333 for center holes according to DIN 332 Centering drills may differ in the following parameters:


- Construction one or double-sided
- Material the most common center drills are carbide and HSS
- Type A, B, etc.
- Dimensions depending on the workpiece's features (overall dimensions, weight, etc.)
- Hardness usually 63-66 HRc Centering drills are selected based on the requirements for the centering hole in the design drawings.

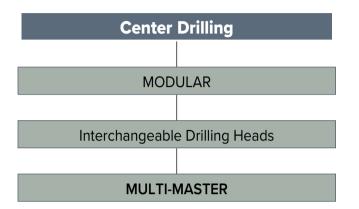
201

Center Drills: Carbide vs HSS

High-speed steel (HSS) reversible center drill bits are the most popular tools for center drilling. The bits are simple, always available for purchase, and feature low price. This may raise the question: "Do the solid carbide bits offer a real alternative to the HSS bits?". A seemingly obvious answer may not be so evident, especially in the case of machining difficult-to-cut material (like Titanium, Inconel, etc.). The carbide bit ensures noticeable increases in cutting speed and feed, resulting in higher productivity and reduced machining cost. In addition, the tool life of solid carbide bit is much longer. Therefore, the correct answer requires brief economic calculations, which will show the actual situation for every specific case.

MM ECS Replaceable Solid Carbide Head for Centering Drilling

High-Speed Steel


(HSS)

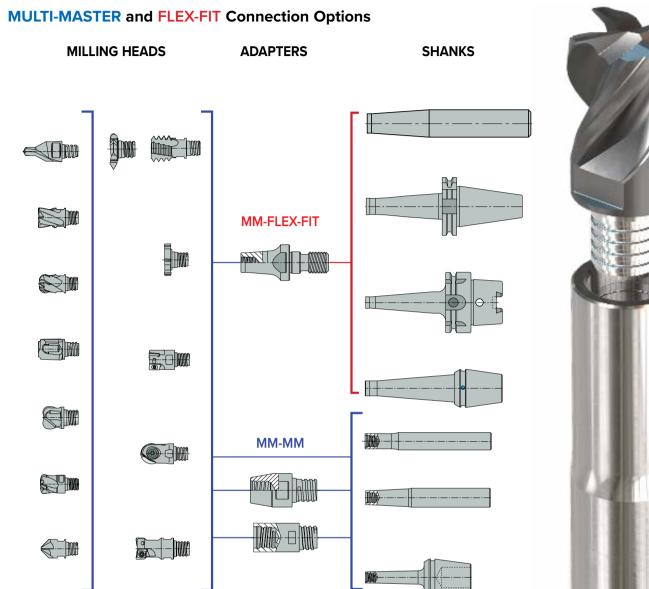
Reversible Center

ISCAR Product Family for Center Drilling

ISCAR offers an interchangeable drilling head for machining centering holes.

MULTI-MASTER Solution for Center Drilling

MULTI-MASTER is a family of tools with shanks and unique interchangeable heads for a variety of drilling, threading, milling, slitting, and slotting applications. Indexing is fast and convenient due to the unique threaded connection. Since the tool is not removed from the machine, there is no setup time for head replacement.


MULTI-MASTER is a high-tech substitute for HSS and solid carbide tools.

The **MULTI-MASTER** system guarantees excellent repeatability, and resharpening of tools is no longer needed. Interchangeable heads with **MULTI-MASTER** connection are available in various **ISCAR** grades that enable high speed machining with excellent toughness and wear resistance. **ISCAR**'s **MULTI-MASTER** can reduce your production costs through increased production efficiency.

40,000 Indexable Solid Carbide Endmill Options

CENTER DRILLING

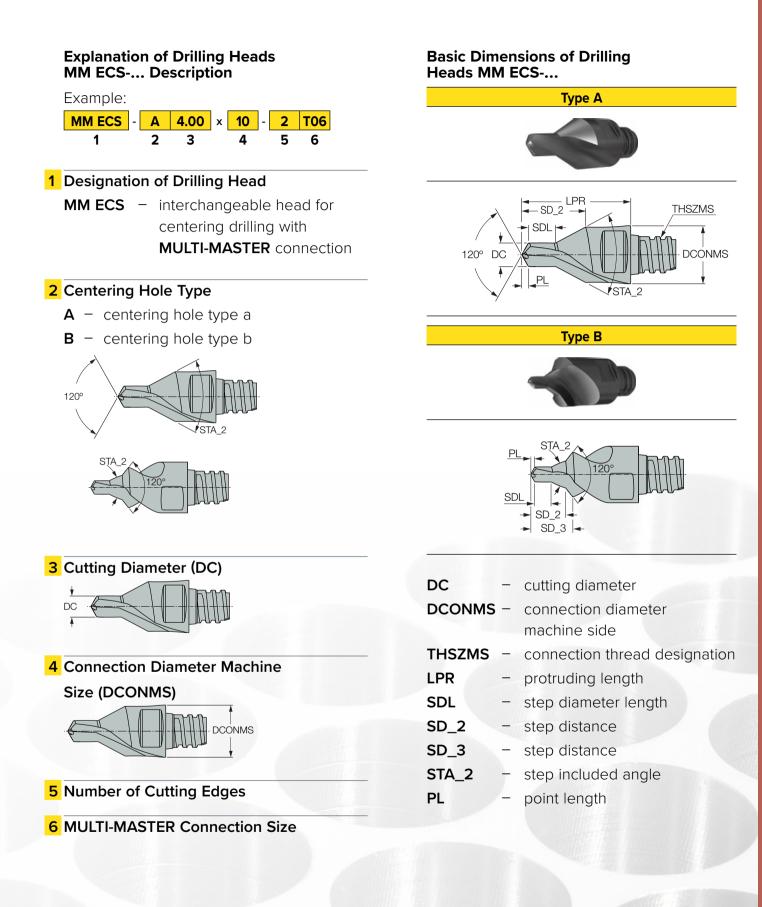
Features

Modular system reduces stock cost by using the same head with different shank options. Enables machining with larger overhangs. Same head can be mounted on metric and inch combinations.

205

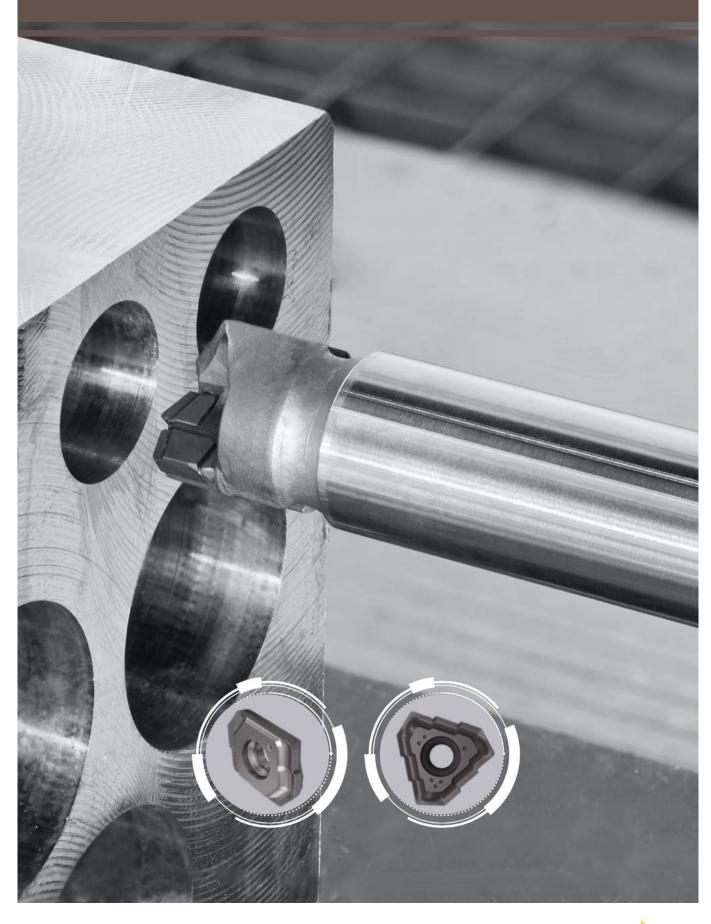
MULTI-MASTER for Center Drilling

The MM ECS **MULTI-MASTER** centering drills family consists of MM ECS-A... and MM ECS-B... drilling heads. The MM ECS-A... designed for machining centering holes type A and the MM ECS-A... designed for machining centering holes type B. The MM ECS-A... items feature a cylindrical drill, followed by 60° conical


edge and the B-type features an extra 120° protective chamfering facet that produces an improved centering hole geometry, which better protects tailstock centers.

MULTI-MASTER Cutting Conditions for Center Drilling

The main elements of the cutting conditions for centering drilling are cutting speed and feed. When drilling holes, it is important to select the right cutting conditions in which the tool will work normally, i.e., most efficiently to save the tool from premature wear, taking into account maximum productivity. Recommended initial conditions are shown in the table below, according to chip breaker form and workpiece material.


					IC908									
			*V _c x F _z [m/min x mm/tooth]											
		MM ECS- A1.00X06-2T04	MM ECS- A1.60X06-2T04	MM ECS- A2.00X06-2T04	MM ECS- A3.15X08-2T05	MM ECS- A4.00X10-2T06	MM ECS- A5.00X12-2T08	MM ECS- A6.30X16-2T10						
	ISO	DCX=2.12, APMX=2.5	DCX=3.35, APMX=3.9	DCX=4.25, APMX=4.8	DCX=6.70, APMX=7.60	DCX=8.50, APMX=9.80	DCX=10.60, APMX=12.00	DCX=13.20, APMX=14.80						
	4340 24-29HRC	80x0.020	80x0.025	80x0.025	80x0.030	80x0.040	80x0.050	80x0.060						
Ρ	4340 38-42HRC	65x0.020	65x0.025	65x0.025	65x0.030	65x0.040	65x0.050	65x0.060						
M	316L MAX-215 HB	50x0.015	50x0.020	50x0.020	50x0.025	50x0.030	50x0.040	50x0.040						
S	Inconel 718	15x0.010	15x0.010	15×0.015	15x0.015	15x0.020	15x0.020	15x0.025						

* V_c Calculated for ØDC

	DCX	IC908										
		*V _c x F _z [m/min x mm/tooth]										
		MM ECS-A3.15X12-2T08	MM ECS-A4.00X127-2T08	MM ECS-A5.00X19-2T12	MM ECS-A6.30X20-2T12							
	ISO	DCX=10.00, APMX=8.80	DCX=12.50, APMX=11.00	DCX=16.00, APMX=13.900	DCX=18.00, APMX=16.80							
D	4340 24-29HRC	75x0.030	75x0.040	75x0.050	75x0.060							
Ρ	4340 38-42HRC	60x0.030	60x0.040	60x0.050	60x0.060							
Μ	316L MAX-215 HB	45x0.025	45x0.030	45x0.040	45x0.040							
S	Inconel 718	12×0.015	12x0.020	12x0.020	12x0.025							

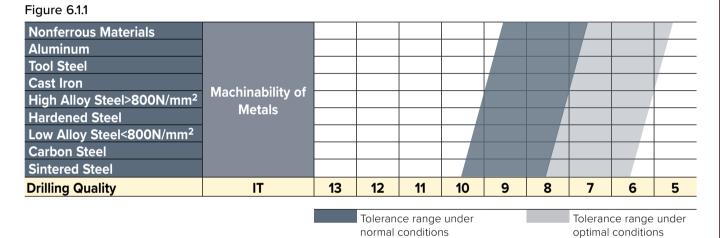
* V_c Calculated for ØDC

Deep Hole Drilling

Machining of high-precision holes by deep drilling is a widespread technological operation today in the field of metalworking. Modern deep hole drilling methods were developed in the late 19th century and throughout the 20th century to meet the needs of the military industry. In the 1870s, following the invention of smokeless powder by a French chemist (which increased power more than six times that of black powder), arose the need for much stronger rifle barrels. Before that, they were made by forging. The steel sheet was cut into strips, the length of each segment corresponded to the length of the barrel and the width of each segment corresponded to the caliber. Each piece was heated and rolled into a tube. The resulting seam, in the area where the edges of the segment meet, was smoothed with hammer blows. Then the notches were made with a broach. By this method, the inner diameter was very accurate, but the smokeless powder tore apart the barrels after several shots.

The engineers decided to make the cannons by drilling solid rods. The first development for deep drilling was the Gundrill. In the late 1800s, start the production of the first weapon with Gundrills: Mauser rifles made in Germany, Springfield rifles in England and USA.

During World War II, it became necessary to dramatically increase the production of warships and submarines. The STS (Single Tube System) was developed to produce naval guns, submarine periscopes and propeller shafts. The system enabled the work four times faster than Gundrills.


An Ejector system was developed in the 1950s. Unlike the STS, which required special machines, it was believed that the ejection system was adapted to conventional machines. The ejector system consists of two tubes, internal and external. The Ejector system, like the STS system, allows faster work than drilling with a gundrill, and ensures better accuracy.

Accuracy and Surface Quality

Deep Drilling Tolerance

Deep drilling configurations when used under recommended conditions can produce holes with tolerance of IT8-IT9 (Figure 6.1.1). When operating under optimal conditions, even better tolerance can be achieved.

Surface Quality

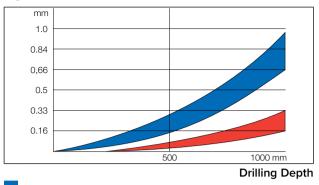
Surface quality that can be achieved in deep drilling is defined in Figure 6.1.2.

Figure 6.1.2

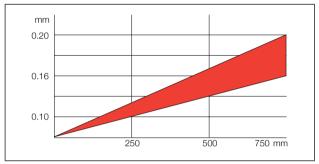
						7							
								VVV			-		

		N12	N11	N10	N9	N8	N7	N6	N5	N4	N3	N2	N1
Indexable Drills													
Reaming													
Honing													
Deep Drilling													
Degree of Roughness	Mm	50	25	12.5	6.30	3.20	1.60	0.80	0.40	0.20	0.10	0.05	0.025
(Ra Roughness Index)	Min	2000	1000	500	250	125	63	32	16	8	4	2	1

Circularity


The geometric quality of bores obtained from deep hole drill bits is clearly higher than that obtained with the use of twist drills. It is possible to obtain precision with deviation of less than 4 μ m (160 μ inch).

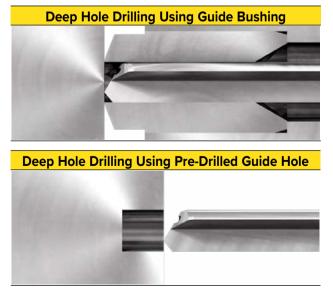
Concentricity and Straightness


The result quality depends on different factors such as:

- Drilling depth (Figure 6.1.3)
- Drilling diameter
- Type of machining and cutting parameters
- Quality and uniformity of the workpiece material
- Machine tool conditions
- Gundrill support (when using gundrill)

stationary workpiece – rotating tool rotating workpiece – stationary tool

Drilling Depth

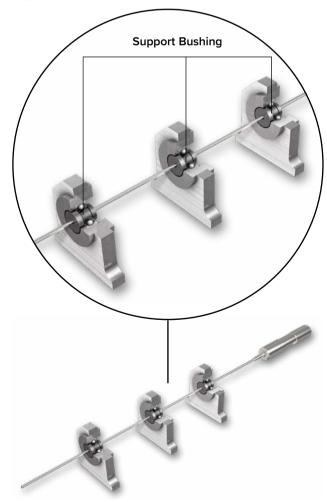


Deep Hole Drilling Features

Preliminary Centering of the Drill

Deep hole drills are not a self-centering tool, and its radial rigidity is low (due to diameter to length ratio). In order to perform high-quality deep drilling with precision and accuracy, it is very important to ensure the correct direction of the drill at the very beginning of the processing. Therefore, an external means must be used to guide it to the point of entry into the workpiece. A guide bushing is an essential component for a proper deep hole drills operation. The function of the guide bushing is to direct the deep hole drills into the material during penetration. ISCAR's guide bushing is based on modified DIN 179 standard. The internal diameter of guide bushing should be equal to drill diameter with tolerance H7. Dedicated deep hole drills machines are equipped with a guide bushing system. An alternative method is a pre-drilled quide hole which is common for machining centers. Once the drill has been fully engaged into this hole, it continues to be self-quided.

Figure 6.2.1



Support Bushing

Support bushing, also known as vibration damper or bar rest, is an element used to support and reduce vibration of the drill while drilling (Figure 6.2.2). Due to the large ratio of the diameter and depth of the drilling hole, as well as the high requirements for hole accuracy, it is necessary to support the drill during machining. Therefore, in deep drilling operations, support bushing is used, which ensures the balance of cutting forces. Support bushing absorbs the torsional and flexural vibrations arising during the drilling process and dissipates them

into the subsoil via the machine base.

Figure 6.2.2

Guide Pads

An integral part of the deep hole drill is the guide pad, which contributes to a high degree of calibration and provides burnishing of the drilled hole.

It is recommended that the machine tool be equipped with a means for guiding the deep hole drills, preferably during the entire drilling process.

Figure 6.2.3

Deep Hole Methods

There are several methods used for deep drilling operations. Rotational motion can be produced by a part or tool, or by both a part and a tool. Linear movement is usually performed by the tool. The combination of these movements depends on the geometry and sizes of the workpiece, as well as on the available equipment.

Rotating Tool and Workpiece

Using this method, the workpiece and tool rotate in opposite directions; the tool while rotating also performs a linear movement for the drilling operation (Figure 6.3.1).

The recommended rotation ratio of a tool relative to the workpiece is 3-5:1, which means that for each revolution of the workpiece it is recommended that the tool perform 3-5 revolutions. The approximate deviation from straightness with counter-rotation of the drill and the workpiece can be 0.005-0.03 mm per 100 mm of hole depth. This method is great for drilling a hole in the center of cylindrical parts. If requested to drill a hole not in the center of the workpiece, or if the part is difficult to revolve due to its geometry or sizes, then this method is less suitable for the drilling operation.

Figure 6.3.1

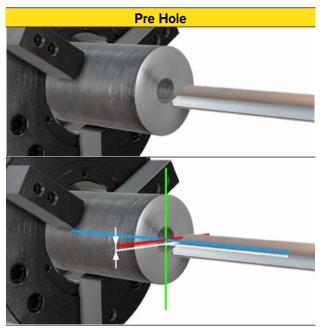
Rotating Workpiece

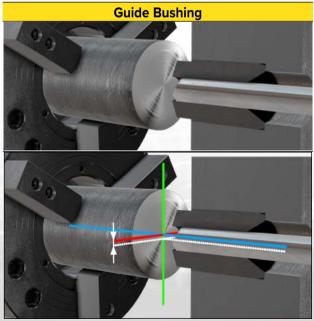
This method is based on the linear movement of the tool and workpiece rotation (Figure 6.3.2). When machining with a non-rotating tool, deviation from the straightness of the hole axis can be 0.03-0.06 mm per 100 mm of hole depth. This method can be useful in case the workpiece is machined on lathes or turning stations and required to drill a hole located in the center of the workpiece.

Figure 6.3.2

Rotating Tool

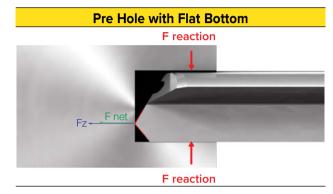
Using this method, the workpiece remains stationary while the tool performs rotational and linear motion (Figure 6.3.3). A rotating tool allows for relatively good straightness in drilling shallow holes, but when drilling deep holes, it is significantly degraded. The approximate deviation from straightness with a rotating drill can be 0.06-0.1 mm per 100 mm of hole depth. This method may be most suitable for drilling holes in a workpiece with complex geometries or in a workpiece with big sizes or when requested to drill several parallel holes or in cases where the required hole is not located in the center of the workpiece.

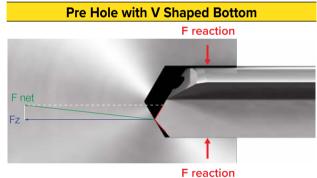

Figure 6.3.3


Practical Tips

The practical tips described below will in many cases help to achieve an optimal result when deep drilling.

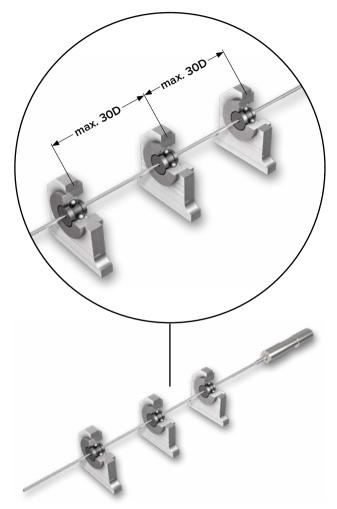
• The gap between the drill and the guide bushing or pre hole should be no more than 0.01 mm (0.0004 inches).




GAP, max 0.01 mm (0.0004 inches)

GAP, max 0.01 mm (0.0004 inches)

- The flat bottom of pre hole is preferable to the V shaped bottom of the
- pre hole in deep drilling operation.
 A conical surface may cause the drill run-off ("walking") and reduce tool life.



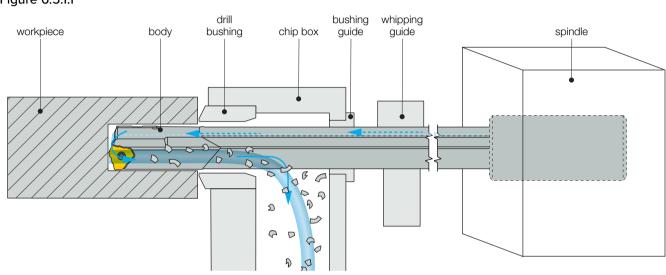
ISCAR

• The distance between the support bushings should be no more than 30D.

- The minimum depth of the pre hole, when drilling without support bushings, depends on the drill length:
 - for depth of hole up to 12D the pre hole should be 0.5D-1.0D
 - for depth of hole 20D-30D the pre hole should be 8D-12D
 - for depth of hole 40D-50D the pre hole should be 20D-25D
 - for depth of hole 60D-80D the pre hole should be 30D-40D
- Oil coolant in deep drilling is preferable over emulsion.
- To minimize drill runout, if possible it is preferable to drill on both sides of the workpiece.
- The drill length should be longer than the requested hole to guarantee enough space for machine accessories (guide bushing, support bushing, etc.).
- To increase drilling stability, it is advisable to use the shortest drill if possible.

ELB System Gundrills

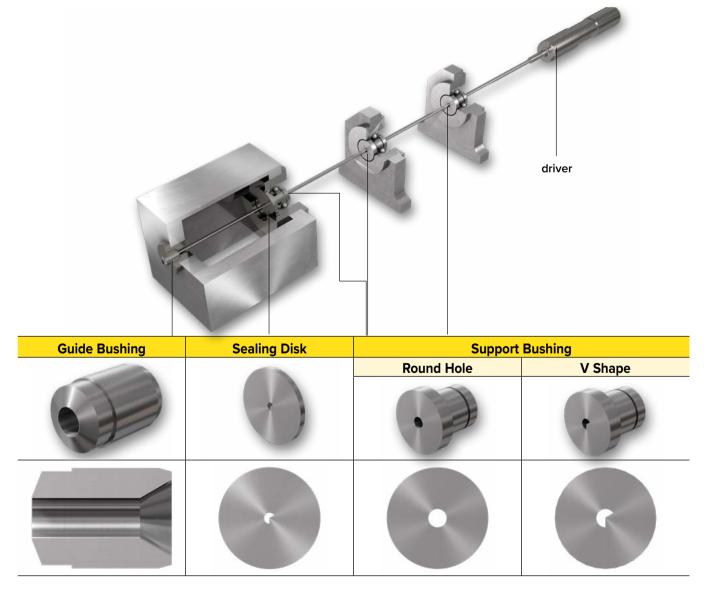
The ELB system, originated from the German name "Einlippenbohrer", is a single, straight fluted drill, also called the Gundrill. **ISCAR** provides Gundrills for drilling holes with an inner diameter of 0.9 mm to 40 mm and a depth of up to 440 drill diameters.


Gundrills came along with advances in weapon technology and were first scientifically researched at the end of the 18th century. Earl Rumford, aka Benjamin Thompson, published his research at the Munich Arsenal in 1798.

Gundrills were originally used to drill the barrel of firearms. Today, gundrills are widely used in all branches of mechanical engineering, usually for drilling deep holes on dedicated machines for mass production.

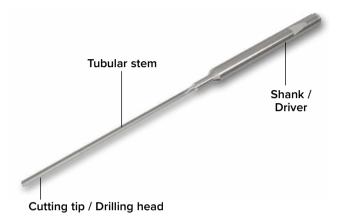
Method of ELB System Gun Drilling

The drilling method of a gundrill is quite simple. During the drilling process, high pressure coolant is supplied into the cutting zone through a channel in the shank, tube, and a hole in the tip. Under the action of pressure, the chips are evacuated from the machining zone along a V-shaped external flute into the chip receiver of the machine (Figure 6.5.1.1). Gundrill_system.pdf

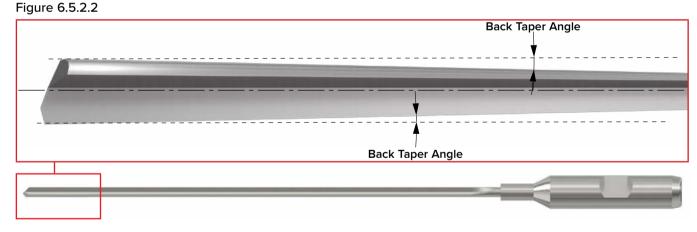


The gundrill is directed into the workpiece during penetration by guide bushing (Figure 6.5.1.2). An alternative to using guide bushing can be pre hole operation. During drilling, the movement can be done by the drill or by the workpiece. To minimize runout, the drill is supported by support bushing along the drill length. The hole in support bushing on which the drill is located can have two shapes, a round hole or a hole with a "V" shape that matches the cross section of the drill (Figure 6.5.1.2).

The sealed housing contains a sealing disk that deflects the swarf and directs it into the chip receiver of the machine (Figure 6.5.1.2). The swarf in the chip receiver filtered and separates the chips from the coolant. Gundrilling machines are available in many variations, from single-spindle manual models to CNC units with multiple spindles of different designs. They can be integrated into transfer lines or be part of a machining or turning center. Gundrilling is also becoming popular as a retrofit package for both conventional and CNC machines.


Figure 6.5.1.2

Gundrill Structure


A gundrill consists of three main elements: cutting tip, also called drilling head (working part), tubular stem with a V-shaped external groove, and shank also called driver (Figure 6.5.2.1).

Cutting Tip / Drilling Head

The drilling head is tapered on its length to reduce friction (Figure 6.5.2.2). The taper angle depends on the type of material to be drilled. For high precision drilling, the taper should be reduced to a minimum. The low taper angle has very high straightness control and good surface finish, but at the same time, poor tool life and high risk of tip jamming in the hole. The high taper angle has better tool life (especially in shrinking materials) and a lower risk of tip jamming in the hole, but at the same time on bad straightness control. It should be noted that when the head is resharpened, the diameter of the drill changes, affecting the hole tolerance.

The key variables of a cutting tip are point location, nose angles, and pad form.

221

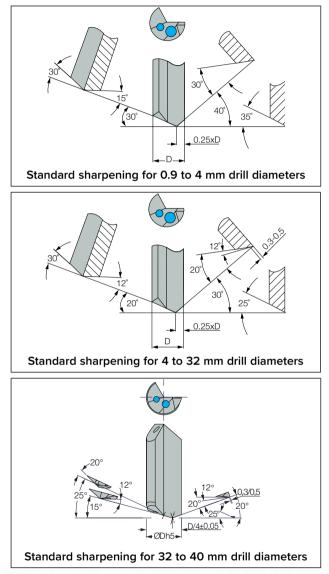
Point Angle Location

ISCAR standard products define a point angle location at a quarter of a drill diameter relative to the drill center axis (Figure 6.5.2.3). Changing the position of the point angle has a direct effect on the drilling process.

Approximating the position of the point angle to the central axis of the drill will cause good straightness, undersize hole, long chips, more power load (Figure 6.5.2.4). Moving the position of the point angle from the central axis of the drill will cause better tool life, oversize hole, and bad straightness (Figure 6.5.2.5).

Figure 6.5.2.3

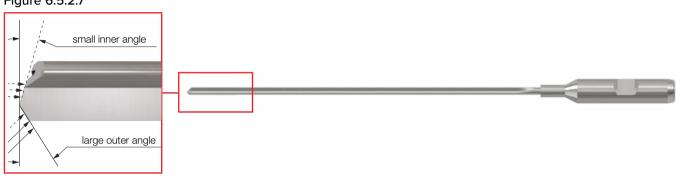
Figure 6.5.2.4


Figure 6.5.2.5

Nose Angles

Standard nose angles depend on the drill diameter (Figure 6.5.2.6).

Figure 6.5.2.6


Note: For special or semi-standard gundrills, special geometries will be offered to match the application.

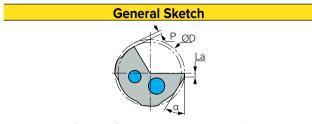
The value of nose angles has an influence on both the drill and the drilled hole.

Increasing the outer angle and decreasing the inner angle will result in an undersized hole, good straightness, and bad tool life (Figure 6.5.2.7).

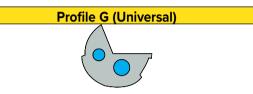
Figure 6.5.2.7

Decreasing the outer angle and increasing the inner angle will result in an oversized hole, bad straightness, and good tool life (Figure 6.5.2.8).

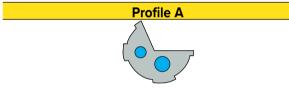
Figure 6.5.2.8

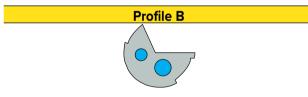


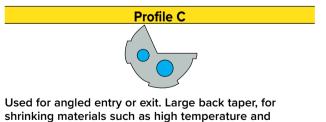
Pad Form


ISCAR's pad forms, also called drill profiles, were specially designed for specific machining applications (Figure 6.5.2.9). The pad form defines the geometry of cutting tip at cross section.

All cross-section profile parameters such as P, La, must be precisely matched to the workpiece material properties.

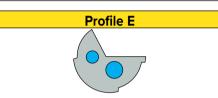

Figure 6.5.2.9


All cross section profile parameters such as: P, La and a must be precisely matched to the workpiece material properties.

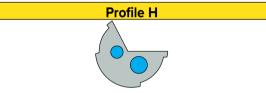

Standard form for most material types, particularly for materials with a tendency to shrink. Recommended for high precision bore tolerance and straightness. Maintains precise exit hole size. Recommended when extra burnishing is required.

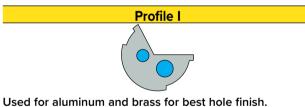
Suitable for cast iron (usually coated) and aluminum alloys. Can be used for cross drilling, angular entry or exit and for interrupted cut. Large coolant gaps between pads.

Excellent size control, for high precision hole tolerance. Used for cast iron and aluminum alloys.



titanium alloys and stainless steel. Large coolant gaps between pads.




Suitable for cast iron only. Very effective in grey cast iron (usually coated).

General use, for alloys and stainless steel. This profile eliminates the problem of the tool sticking in the hole after the outer corner dulls. Especially suitable for crankshaft and other forged materials. Recommended for accurate hole straightness.

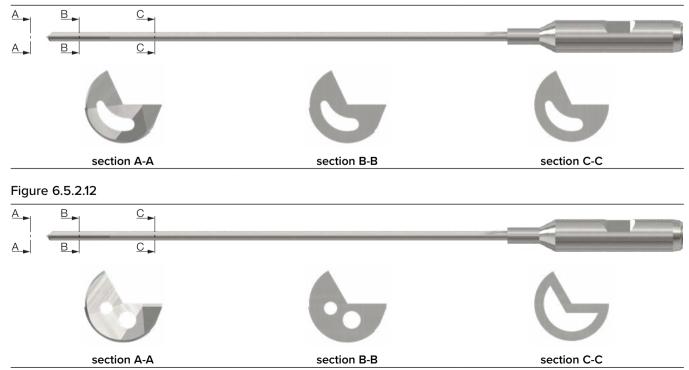
Recommended for all nonferrous and cast iron materials up 5 mm diameter. Sometimes used for wood and plastic with larger back taper.

For intersecting holes and interrupted cut or when extra outer diameter support and burnishing is required.

Coolant Hole

There are two types of cooling drills that depend on the diameter of the drill (Figure 6.5.2.10).

Standard for drill diameter equal or larger than Ø8mm


Tubular Stem

The cross section of the tubular stem is V-shaped with an internal coolant channel. Gundrill tubular stems can be solid carbide or steel. In the first case, the cutting tip and tubular stem are made from a solid carbide rod, which is soldered to the steel shank (Figure 6.5.2.11). The advantages of this design are high strength and rigidity, which contributes to the ability of drilling at higher cutting conditions which has a positive effect on productivity.

In the second case, the drills consist of a cutting tip soldered to a steel tubular stem that is soldered to the shank (Figure 6.5.2.12).

The V-groove steel tubular stem is obtained by cold rolling of pipes.

The outer diameters of the tubular stem should be less than the diameter of the drill in order to exclude contact with the drilled hole surface.

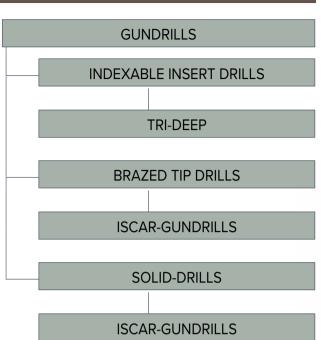
Shank

The shank, also called driver, is to ensure the connection between the gundrill and the machine tool. The types of drivers are shown in Figure 6.5.2.13.

Figure 6.5.2.13

					→ F ←		-> F -
					BRAZED GUNDR		SOLID CARBIDI
			Driver Code				
			ŭ	Max. Cutting Diameter	Equal Or Less	More	
			Ver	ttin	Than max.	Than m	
Driver Type	Drawing	DXL	Ď	Dia Dia	Cutting Diameter	Diamet	
		4x28	N°1	2.749	10	20	18
		5x28	N°2	3.249	10	20	15
		6x36	N°3	4.249	10	20	14
		8x36	N°4	5.749	10	20	14
		10x40	N°5	7.299	10	20	15
		12x45	N°6	8.999	10	20	15
		.50x1.78″	N°94	9.699	10	20	15
		14x45	N°7	10.999	10	20	15
Cylindrical	╎╾╴╵╶╸	16x48	N°8	12.399	10	20	15
DIN1835A	D	18x48	N°9	14.399	10	20	15
DIN6535HA		.75x2.03″	N°95	14.899	10	20	15
		20x50	N°10	15.899	10	20	
		25x56	N°11	19.509	10	25	
		1.00x2.28"	N°96	19.509	10	25	
		1.25x2.28″	N°97	25.609	10	25	
		32x60	N°12	25.609	10	25	
		40×70	N°13	32.609	10	25	
		50x80	N°14	40	10	25	
		63x90	N°15	40	10	25	
		6x36	N°16	2.749	10	20	15
		8x36	N°17	3.249	10	20	15
		10x40	N°18	7.299	10	20	15
	L I L	12x45	N°19	8.999	10	20	15
		.50x1.78″	N°98	9.699	10	20	15
		16x48	N°20	12.399	10	20	15
Weldon		18x48	N°21	14.399	10	20	15
DIN1835B		.75x2.03″		14.899	10	20	15
DIN6535HB		20x50	N°22	15.899	10	20	15
BINOSSSIID		25x56		19.509	10	25	
		1.00x2.28"	N°100		10	25	
		1.25x2.28″		25.609	10	25	
		32x60		25.609	10	25	
		40×70	N°25	32.609	10	25	
		50x80	N°26	40	10	25	
		63x90	N°27	40	10	25	

					-> F		F F
					BRAZED GUNDR	ILL	SOLID CARBIDE
			Driver Code		F = CYLINDRIC	AL TUBE	GUNDRILL
			ŭ	ete i	Equal Or Less	More	
			ivel	Max. Cutting Diameter	Than max.	Than max.	F = Straightening
Driver Type	Drawing	DXL	D	Max. Cutti Diam	Cutting Diameter	Diameter	Extension
		6x36	N°28	2.749	10	20	
		8x36	N°29	3.249	10	20	
		10x40	N°30	7.299	10	20	15
Whistle	►	12x45	N°31	8.999	10	20	15
Notch		16x48	N°32	12.399	10	20	15
DIN1835E	– – – – – – – – – – – – – – – – – – –	18x48	N°33	14.399	10	20	15
DITTIOSSE	↓ ▼	20x50	N°34	15.899	10	20	15
		25x56	N°35	19.509	10	25	
		32x60	N°36	25.609	10	25	
		40x70	N°37	32.609	10	25	
		6x36	N°38	2.749	10	20	15
		8x36	N°39	3.249	10	20	15
Whistle		10x40	N°40	7.299	10	20	15
Notch	D	12x45	N°41	8.999	10	20	15
DIN6535HE	Ĭ	16x48	N°42	12.399	10	20	15
		18x48	N°43	14.399	10	20	15
		20×50	N°44	15.899	10	20	15
		CM1	N°45	9.599	10	20	
DIN228AK		CM2	N°46	14.599	10	20	
		CM3	N°47	21.499	10	25 25	
		CM4 CM1	N°48 N°49	29.499 9.599	10 10	25 20	
		CM1 CM2	N°50	14.599	10	20	
DIN228BK	⋐ੑੑੑੑ੶੶੶੶₽	CM3	N°51	21.499	10	20	
		CM4	N°52	29.499	10	25	
		6x30	N°53	2.749	10	20	20
		10x40	N°54	7.299	10	20	15
		16x45	N°55	12.399	10	20	10
Central		.750x2.75"	N°56	14.899	10	20	
Clamping		25x70	N°57	19.509	10	25	
Surface 15°		1.00x2.75"	N°58	19.509	10	25	
		1.25x2.75″	N°59	25.609	10	25	
		1.50x2.75″	N°60	32.609	10	25	
Frontal	L,						
Clamping		16x50	N°61	12.399	10	20	
Surface 15°							
		10x50 M6X0.5		7.299	10	20	15
		10×60 M6X0.5	N°63	7.299	10	20	
		.50x1.97″	N°64	8.999	10	20	15
Cylindrical		M6x0.5					
With Thread		16x80 M10X1	N°65	12.399	10	20	15
		25x100 M16x1.5	N°66	19.509	10	25	
		36x120 M24x1.5	N°67	30.609	10	25	


					→ F ►		→ F ←
					BRAZED GUNDR	ILL	SOLID CARBIDE
			Driver Code		F = CYLINDRIC	AL TUBE	GUNDRILL
			Ŭ	etel	Equal Or Less	More	
			ive	Max. Cutting Diameter	Than max.	Than max.	F = Straightening
Driver Type	Drawing	DXL		n D D D	Cutting Diameter	Diameter	Extension
		10x68 M6x0.5	N°68	6.749	10	20	
		16x90 M10x1	N°69	10.799	10	20	15
VDI Design		25x112 M16x1.5	N°70	19.509	10	25	
	↓ ⁺	36x135 M24x1.5	N°71	30.609	10	25	
Central	∣◄── └──►∣ ¥	25x70	N°72	19.509	10	25	
Clamping Hexagonal		32x70	N°73	25.609	10	25	
Central Clamping Tapered		.50x1.50"	N°74	8.599	10	20	15
		16x70	N°75	12.099	10	20	15
		.75x2.75″	N°76	14.099	10	20	
		20x70	N°77	16.099	10	20	15
		.50x1.50"	N°78	9.699	10	20	
		.75x2.75″	N°79	14.899	10	20	
Frontal		1.00x2.75″	N°80	19.509	10	25	
Clamping		1.00x3.94"	N°81	19.509	10	25	
Surface 2°		1.25x2.75″	N°82	25.609	10	25	
		1.25x3.94"	N°83	25.609	10	25	
		1.50x2.75″	N°84	32.609	10	25	
		1.50x3.94"	N°85	32.609	10	25	
		16x112 Tr 16x1.5	N°86	13.599	10	20	
Trapezoidal		20x126 Tr 20x2	N°87	17.099	10	20	
Thread		28x126 Tr 28x2	N°88	25.599	10	25	
		36x162 Tr 36x2	N°89	32.599	10	25	
Sprovmiet	≪ └- > ↓	16x40	N°90	12.399	10	20	
Spraymist Driver		25x50	N°91	19.509	10	25	
Driver		35x60	N°92	26.599	10	25	

Gundrills Per Customer Request

In addition to standard geometries, shapes, profiles, dimensions of cutting tips, and standard gundrill lengths, **ISCAR** develops special gundrills according to customer requirements - the result of years of research and development in tool design.

ISCAR-GUNDRILLS Products

Currently, gundrills of various designs are used in mechanical engineering. **ISCAR** offers 2 families of Gundrills for deep drilling, **ISCAR-GUNDRILLS** and **ISCAR TRI-DEEP**. Each family has its own uniqueness. **ISCAR-GUNDRILLS** offer a solution for Solid gundrills designed for drilling diameters of 0.9 mm to 16 mm and a solution of gundrills with a brazed tip that is designed for drilling diameters of 2.5 mm to 40 mm, while **ISCAR TRI-DEEP** offers a gundrill solution with indexable inserts that are designed for drilling diameters of 12 mm to 28 mm.

BTA System STS

The BTA system (Boring and Trepanning Association), also called STS (Single Tube System), is a modified deep hole drilling method that was developed in the 1940s to minimize the disadvantages of the SBL system (gundrilling) such as chip contact with the hole surface and low torsional moment. The BTA system got its name in the 1950s. The development of the BTA system was dominated by the German company "Gebrüder Heller", which during the second world war combined its own developments with the developments of Burgsmüller and Beisner. Burgsmüller replaced the previously used grooved drill shaft with a tube and for the first time the chips were evacuated through the inside of the tube. Beisner improved the drill design and introduced oil as coolant.

Gebrüder Heller has introduced carbide cutting edges and guide pads into the BTA system.

The BTA system covers the largest range of drilling diameters in comparison with other systems (ELB and DTS).

ISCAR provides BTA drills for drilling holes with an inner diameter of 8 mm to 294 mm and a depth of up to 325 drill diameters.

Method of BTA System STS

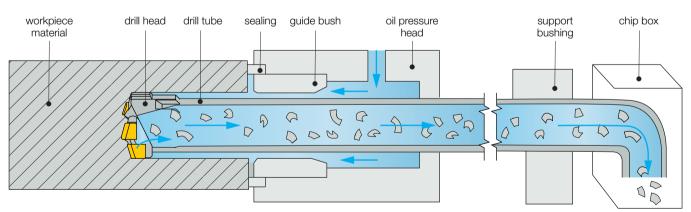
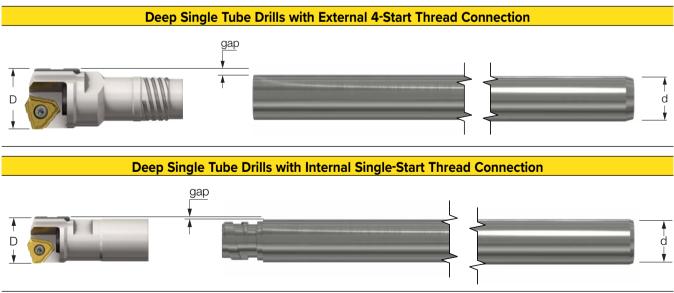

The BTA system is based on external coolant supply and internal chip evacuation through the hole in the drill (Figure 6.6.1.1). The BTA tool is directed into the workpiece during penetration by guide bushing, while a motor turns either the tool or the workpiece or both tool and workpiece. To minimize runout, the drill is supported by support bushing along the drill length. The diameter of the drill pipe (stem) is smaller than the diameter of the drill head, which provides an annular gap between the walls of the machined hole and the outer diameter of the drill pipe. This space is also known as "oil room" and in conjunction with a coolant induction unit or a pressure head. In addition, it makes it possible to direct filtered high volume coolant to the drill head cutting edge. Coolant is injected into the pressure head under high pressure. This feature of the coolant supply requires the use of a special hermetic seal between the workpiece and the pressure head.

Figure 6.6.1.1

The sealing between the pressure head and the workpiece is ensured by a sealing ring. This pressure head seals against the entry side of the workpiece to be drilled. Also, this directs the coolant to the detachable drill head; in other words, this coolant supply scheme allows the coolant to be delivered directly to the cutting edges, and large volumes of fluid (compared to the ELB drilling system) quickly remove the chips from the cutting area and send them through the hole in the stem to the chip receiver. These factors determine the need to use specialized deep hole drilling machines. But despite the mandatory use of special equipment, tooling and technological methods, the technology of drilling deep holes with an external coolant supply solves the most complex problems of machining parts with deep holes, which are inaccessible for solution by any other

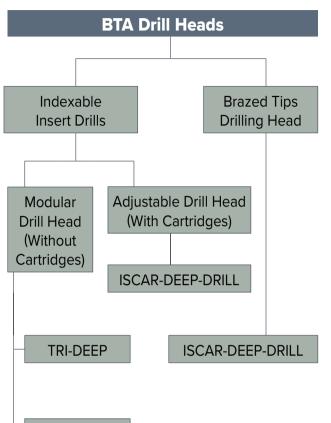
technologies, and is recognized as the most

advanced deep hole drilling technology.



BTA Drill Structure

Due to the large depth of holes to be drilled, the deep hole drilling tool is long. For ease of manufacture and operation, it is usually assembled in length. The BTA drill consists of a drilling head, which is assembled to the drill pipe (stem) using a rectangular thread with a coarse pitch - for fast and reliable fastening.


The thread on the drill head can be internal and external, one or four-start, depending on the type of drill and the diameter of the drilling (Figure 6.6.2.1).

The diameter of the drill pipe (stem) is smaller than the diameter of the drill head, which provides an annular gap between the walls of the machined hole and the outer diameter of the drill pipe. The stem of the tool, covering the length from the head to the end of the tool and serving to give the tool the required length, is the least rigid link in the deep hole drilling system. The profile and dimensions of its cross-section are chosen to ensure the highest possible rigidity while simultaneously performing the functions of supplying coolant to the cutting zone and removing chips by the coolant flow. The stems of the BTA system can be whole or composite in length.

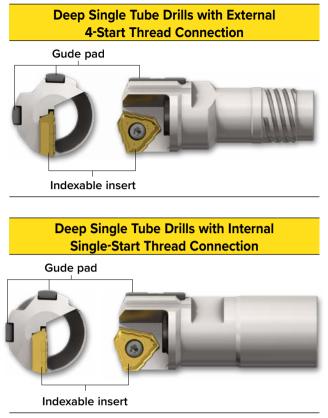


Figure 6.6.2.1

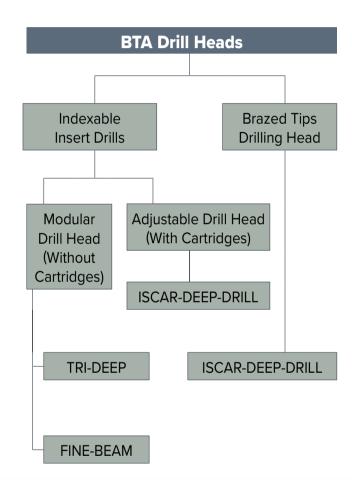
BTA drill head designs are quite diverse and can be classified as follows:

FINE-BEAM

The BTA drill head has a hollow cylindrical shape with single cutting edge. The cutting edge can consist of one or more indexable inserts or brazed tips, depending on the diameter of the drill head. The guide pads are positioned at the circumference of the drill head. The guide pads brace the tool against the machined surface, which is another distinctive feature of the BTA process and the tool.

ISCAR BTA Drill Products

Currently, drills of the BTA (Boring and Trepanning Association) system, also known as the STS (Single Tube System), are widely used for machining deep holes in various designs.


ISCAR offers three families of BTA system drills: **ISCAR TRI-DEEP**, **ISCAR FINE-BEAM**, and **ISCAR-DEEP-DRILL**. Each family can machine all types of materials, but each has its unique characteristics.

ISCAR TRI-DEEP provides a deep hole machining solution with an indexable insert featuring three cutting edges, suitable for drilling diameters ranging from 16 mm to 40 mm.

ISCAR FINE-BEAM offers a solution with indexable inserts for drilling diameters from 25 mm to 89 mm.

ISCAR-DEEP-DRILL offers a versatile solution with adjustable cartridges carrying indexable inserts designed for drilling diameters from 38 mm to 291.99 mm, as well as a brazed tip solution for diameters from 8 mm to 65 mm.

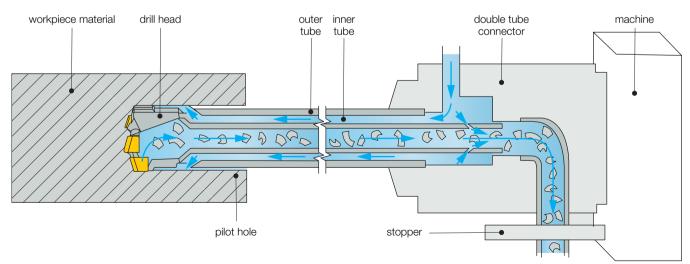
BTA system drilling heads with indexable inserts are available with both external four-start threads and internal single-start threads, guaranteeing IT10 hole diameter accuracy. Drilling heads with a brazed tip up to a diameter of 14.79 mm come with an external single-start thread, while those above 14.79 mm feature external two or four-start threads, ensuring IT9 hole diameter accuracy.

Ejector System DTS

The ejector drilling system was developed in the 1960s and was first shown at the EMTE exhibition in 1965. The technology of ejector drilling of deep holes involves the use of a tool with two stems (two pipes); therefore, it is also called the DTS (Double Tube System). Ejector drilling provides practically the same results in terms of productivity, accuracy, and hole quality as deep drilling with internal and external coolant supply. An ejector system allows drilling on existing machining centers, horizontal boring machines, lathes, or turning centers, etc., by adding a pumping coolant station. With ejector drilling, it is not required to seal the gaps between the workpiece and the tool system, which simplifies setup and maintenance of the machine.

Ejector drilling systems can be used to drill holes in a wide variety of workpieces, including interrupted holes such as crankshafts, track shoe, and more.

ISCAR provides DTS drills for drilling holes with an inner diameter of 18.4 mm to 184 mm and a depth of up to 325 drill diameters.



Method of Ejector System DTS

The ejector deep hole drilling system or double pipe system (DTS) is a system in which high pressure coolant is supplied to the machine spindle directly or through a connection adapter between the drilling tool and the machine (Figure 6.7.1.1).

The drilling tool consists of an outer tube and an inner tube that are connected to a high-pressure coolant supply on one side and to the drill head on the other side. High pressure coolant is supplied through the annular gap between the outer and inner pipe of the tool to the drill head.

Most of the coolant flow is directed through the coolant outlets around the circumference of the tool to the cutting edges of the drill head, allowing chips to be evacuated through the inner tube to the chip receiver. A small part of the coolant is fed directly into the inner tube via a sloped slot in the inner tube, thereby creating an ejector effect. The coolant flow coming out of the slots is directed along the inner pipe hole axis to its outlet end and sucks in the swarf from the cutting area, thereby improving the conditions for chip removal. This system requires less coolant pressure than the single tube system (STS) and can be successfully used on existing machining centers without significant changes.

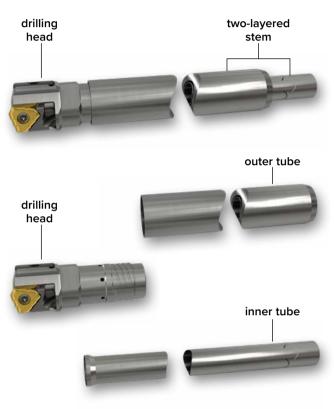
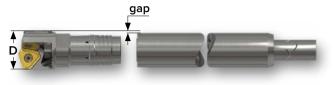
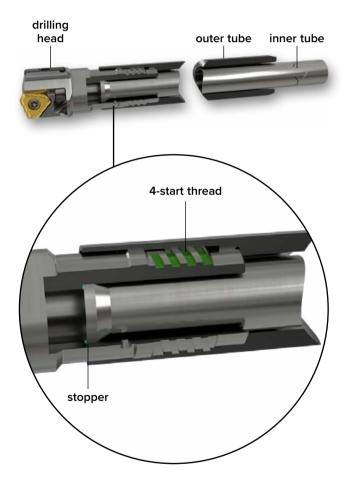
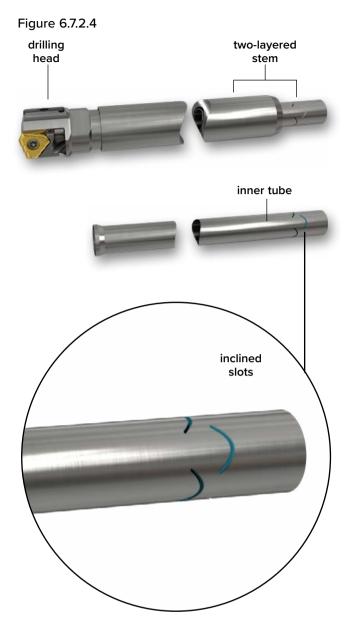


Figure 6.7.1.1

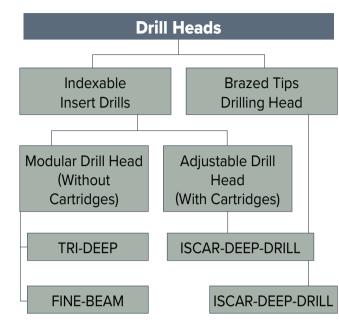
DTS Drill Structure


The DTS drill is an assembly tool for deep drilling.The main elements are the drilling head and a two-layered stem. The stem consists of an outer tube and an inner tube (Figure 6.7.2.1).


The drilling head is screwed on the outer pipe using a rectangular thread with a coarse pitch. The thread on the drill head and outer pipe can start one or four-start, depending on the type of drill and the diameter of the drilling. The diameter of the outer drill pipe is slightly less than the diameter of the drill head (Figure 6.7.2.2).



The inner pipe is inserted into the drilling head until it reaches the stopper (Figure 6.7.2.3).



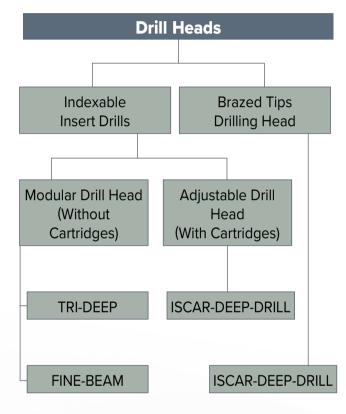
Generally, sloped slots are located at the tail end of the inner tube. The location of the inclined slots on the inner pipe is not random since the efficiency and performance of the ejector drill system depend on its position (Figure 6.7.2.4).

The diametric dimensions of the inner and outer pipes affect two flow sections of a DTS drill: the size of the coolant supply channel and the diameter of the outlet channel. DTS drill head designs are quite diverse and can be classified as follows:

The DTS drill heads have a hollow cylindrical shape with a single cutting edge. The diameter of the drill head determines the possibility of using a particular design of the cutting part and the way it is assembled to the head body. The guide pads are positioned at the circumference of the drill head. A very important and distinctive feature of the DTS drill head is the coolant supply holes, which are located along the perimeter of the drill head body (Figure 6.7.2.5).

Figure 6.7.2.5

coolant supply holes

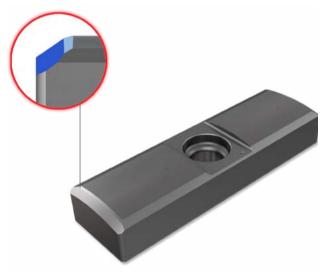


ISCAR DTS Drill Products

Drills utilizing the DTS (Double Tube System) system, are commonly used for deep hole machining in a variety of designs. **ISCAR** offers three distinct families of DTS system drills: **ISCAR TRI-DEEP**, **ISCAR FINE-BEAM**, and **ISCAR-DEEP-DRILL**. While each family is capable of machining all material types, they each have unique features.

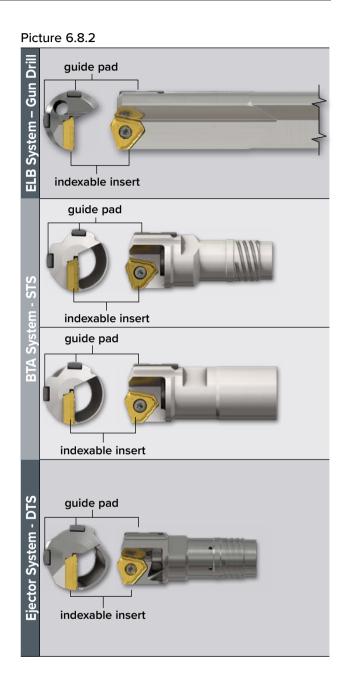
The **ISCAR TRI-DEEP** family provides deep hole machining solutions with indexable inserts that have three cutting edges, suitable for drilling diameters between 18.4 mm and 28 mm.

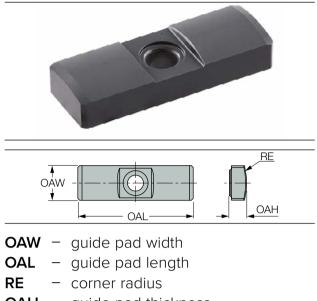
The **ISCAR FINE-BEAM** family, equipped with indexable inserts, is designed for drilling diameters from 25 mm to 65 mm. The **ISCAR-DEEP-DRILL** family offers a flexible solution with adjustable cartridges carrying indexable inserts for drilling diameters from 38 mm to 183.99 mm, in addition to a brazed tip option for diameters from 18.4 mm to 65 mm. DTS system drilling heads come with external four-start threads. DTS system drilling heads with indexable inserts provide IT10 hole diameter accuracy, while those with a brazed tip ensure IT9 hole diameter accuracy.



Guide Pads

The non-symmetrical design of deep hole drilling tools affects surface finish, hole accuracy, and tool life. The guide pads help reduce the negative effects that result from the non-symmetrical design of deep hole drills.


The **ISCAR** guide pads are designed with double chamfer at the edges (picture 6.8.1) that helps smooth entry into the machining hole, prevents premature wear, reduces the risk of guide pad damage, and improves surface finish by minimizing the risk of scratching the hole surface.

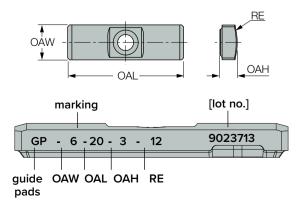

All **ISCAR** tools for deep drilling are equipped with two guide pads (picture 6.8.2).

The selection of a guide pad size will be in accordance with the recommendations that exists in each **ISCAR** deep drilling line, usually the size of the guide pad depends on the diameter of the drill.

Explanation of ISCAR Guide Pads Description
Example: <mark>Gps</mark> - <mark>05</mark> - <mark>18</mark> - <mark>060</mark> - DC IC908 1 2 3 4 5 6
1 Designation of Guide Pad GPS – guide pad for ISCAR drills
2 Guide Pad Width (OAW)
3 Guide Pad Length (OAL)
Corner Radius (RE)
5 Shape DC – double chamfering
6 Grade IC908, – depends on the IC928, machined material IC950

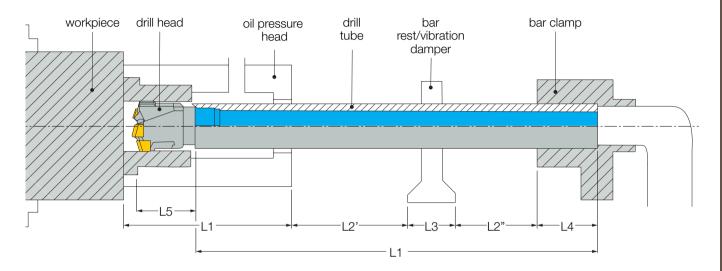
Basic Dimensions of ISCAR Guide Pads

OAH - guide pad thickness


Grade Selection of an ISCAR Guide Pad

ISCAR guide pads are available with different grades depending on the machined material. The recommendation for guide pad selection should be in accordance with table 6.8.3.

Table 6.8.3


Guide Pad Grade Recommendation										
	Ο	il Coola	nt	Water Based Coolant						
Priority	1	2	3	1	2	3				
ISO-P	IC950	IC908	IC928	IC928	IC908	-				
ISO-K	IC950	IC908	IC928	IC928	IC908	-				
ISO-M	IC928	IC908	IC950	IC928	IC908	-				
ISO-S	IC928	IC908	IC950	IC928	IC908	-				

Universal Marking of the ISCAR Guide Pad

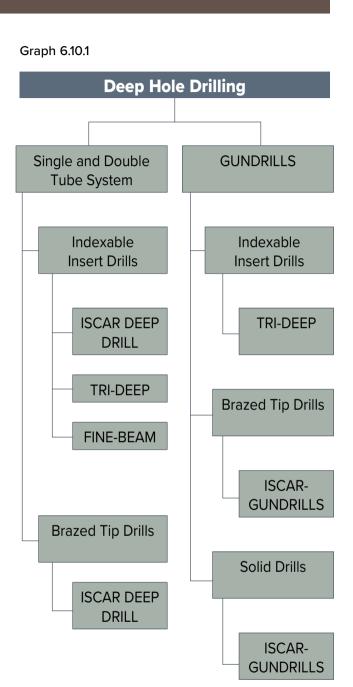
Calculation of Tube Length for BTA and DTS Methods

When drilling using the BTA or DTS method, the required pipe length should be calculated according to the following description.

Drill Tube Length L = L1 + L2 + L3 + L4 - L5

- **L** = drill tube length
- **L1** = oil pressure head length
- L2 = drilling depth (L2' + L2'')
- L3 = bar rest/vibration damper length
- **L4** = drill tube clamping length Ls
- L5 = end of drill tube to tip of peripheral insert

Note: Drill tubes with different lengths compared to standard drills, are availble upon request.


ISCAR Deep Drilling Products

Deep drilling technology is utilized across a wide range of industries to manufacture various parts that require precision and depth. This technology encompasses several drilling methods, each suited for different applications and material requirements.

The primary deep drilling methods include:

- ELB System gundrills
- BTA System STS (Single Tube System)
- Ejector System DTS (Double Tube System)
 ISCAR offers comprehensive solutions for all these deep drilling systems, providing various types of drills tailored to meet specific drilling requirements. These solutions include:
- Indexable insert drills
- Brazed tips drilling head
- Brazed tip drills
- Solid drills

Each solution has its own unique characteristics and advantages, allowing **ISCAR** to provide tailored deep drilling solutions for various industrial applications. Graph 6.10.1 illustrates the different **ISCAR** families/lines available for each deep drilling system, showcasing the breadth and versatility of **ISCAR**'s product offerings in the realm of deep drilling technology.

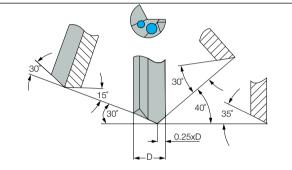
ISCAR-GUNDRILLS Solid Carbide Gundrills

The **ISCAR-GUNDRILLS** line provides solutions for deep drilling by Gundrill method with solid carbide drills. The solid carbide Gundrills are designed for conventional machines, machining centers, and lathes. This style of Gundrill is available from 0.9 mm to 16 mm with maximum flute length of 300 mm and can be used on various types of materials. It provides superior rigidity and optimal coolant flow rates.

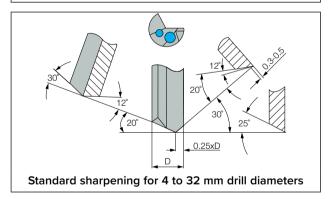
STCGD-.... Standard Solid Carbide Drills

STCGD-... is a description of standard solid carbide gundrills belonging to the **ISCAR-GUNDRILLS** line. STCGD-... gundrills are capable of drilling holes of 0.9 mm to 16 mm in sequential steps of 0.1 mm. The sharpening of these gundrills depends on the diameter of the drill (table 6.11.1.1), and the profile is the same for all these gundrills ("General Sketch" according to table 6.11.1.2). The driver type can be selected according to table 6.11.1.3.

CGD-.... Semi-Standard Solid Carbide Drills


CGD-... is a description of semi-standard solid carbide gundrills belonging to the **ISCAR-GUNDRILLS** line.

CGD-... gundrills are capable of drilling holes of 0.9 mm to 16 mm in any sequential steps. Sharpening, profile, and driver type can be selected in any variant from standard tables respectively. There is an option for polishing and grade selection.


SPCGD-.... Special Solid Carbide Drills

SPCGD-... is a description of special solid carbide gundrills belonging to the **ISCAR-GUNDRILLS** line. SPCGD-... gundrills are capable of drilling holes of 0.9 mm to 16 mm in any sequential steps. Sharpening, profile, flute length and driver type can be selected in any variant. There is an option for polishing and grade selection.

Table 6.11.1.1 – Standard Sharpening

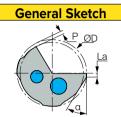
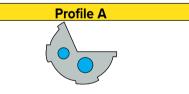
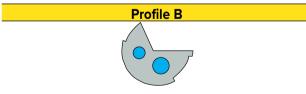
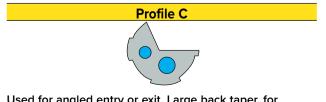

Standard sharpening for 0.9 to 4 mm drill diameters

Table 6.11.1.2 – Drilling Head Profile

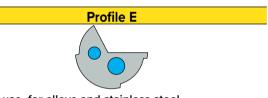
Standard Gundrill Head Profiles

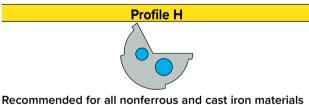

Drilling capacity and finish of the drilled hole are dependent on the geometrical shape of the drill head. Both the profile and the sharpening must be matched to the workpiece material.

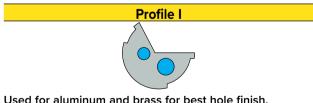

All cross section profile parameters such as: P, La and 'a' must be precisely matched to the workpiece material properties.


Standard form for most material types, particularly for materials with a tendency to shrink. Recommended for high precision bore tolerance and straightness. Maintains precise exit hole size. Recommended when extra burnishing is required.

Suitable for cast iron (usually coated) and aluminum alloys. Can be used for cross drilling, angular entry or exit and for interrupted cut. Large coolant gaps between pads.


Excellent size control, for high precision hole tolerance. Used for cast iron and aluminum alloys.


Used for angled entry or exit. Large back taper, for shrinking materials such as high temperature and titanium alloys and stainless steel. Large coolant gaps between pads. The profile is defined when the tool is manufactured. Although regrinding may change the cutting geometry, the profile should remain the same.


Suitable for cast iron only. Very effective in grey cast iron (usually coated).

General use, for alloys and stainless steel. This profile eliminates the problem of the tool sticking in the hole after the outer corner dulls. Especially suitable for crankshaft and other forged materials. Recommended for accurate hole straightness.

Recommended for all nonferrous and cast iron materials up 5 mm diameter. Sometimes used for wood and plastic with larger back taper.

Used for aluminum and brass for best hole finish. For intersecting holes and interrupted cut or when extra outer diameter support and burnishing is required.

ISCAR

Table 6.11.1.3 – Driver Type

Driver TypeDrawingDXLBRAZED GUNDRIL P 8 2Solid CARE GUNDRILFigual Or Less by 8 bineterMore Than max, Cutting DiameterFe Straighte Than max, Cutting DiameterFe Straighte ExtensionViver Type4x28NM2.7491020185x28N23.24910020145x28N23.24910020146x36N*34.24910020148x36N*457.49100201510x400N*57.299100201510x400N*68.999100201510x400N*68.999100201510x400N*68.999100201510x400N*68.999100201510x400N*618.99100201510x400N*710.99100201510x400N*812.399100201510x02.28"N*914.89100201510x02.28"N*015.89100201510x2.28"N*1015.89100201510x2.28"N*1015.89100201510x2.28"N*1015.89100251010x2.28"N*1015.89100251010x2.28"N*1025.60100251010x2.2	-
Driver Type Drawing DXL $\frac{9}{2}$ $\frac{9}{2}$ $\frac{9}{2}$ $\frac{9}{2}$ $\frac{9}{2}$ $\frac{9}{2}$ $\frac{1}{2}$ More Than max. Cutting Diameter More Than max. Cutting Diameter $\frac{1}{2}$ <th></th>	
Cylindrical DIN6535HA Linking 4x28 N°I 2.749 10.00 200 18 Cylindrical DIN6535HA 5x28 N°2 3.249 100 20 14 6x36 N°3 4.249 100 20 14 8x36 N°4 5.749 100 20 14 10x40 N°5 7.299 100 20 15 12x45 N°6 8.999 100 20 15 150x178" N°94 9.699 100 20 15 16x48 N°8 12.399 100 20 15 20x50 N°10 15.899 100 20 15 20x50 N°10 15.899 100 25 100	
Cylindrical DIN6535HA Lixing 0 4x28 4x28 N°1 2.749 10.00 0.00 20.0 18 0.00 Cylindrical DIN6535HA 5x28 N°2 6x36 3.249 10 20 14 10x40 N°5 7.299 10 20 14 10x40 N°5 7.299 10 20 15 10x48 N°4 9.699 10 20 15 16x48 N°8 12.399 10 20 15 20x50 N°10 15.899 10 20 15 100x2.28" N°96 19.509 10 25 10 20x50<	
Cylindrical DIN6535HA Lixing 0 4x28 4x28 N°1 2.749 10.00 0.00 20.0 18 0.00 Cylindrical DIN6535HA 5x28 N°2 6x36 3.249 10 20 14 10x40 N°5 7.299 10 20 14 10x40 N°5 7.299 10 20 15 10x48 N°4 9.699 10 20 15 16x48 N°8 12.399 10 20 15 20x50 N°10 15.899 10 20 15 100x2.28" N°96 19.509 10 25 10 20x50<	-
Cylindrical DIN6535HA 5x28 N°2 3.249 10 20 15 6x36 N°3 4.249 10 20 14 8x36 N°4 5.749 10 20 14 10x40 N°5 7.299 10 20 15 12x45 N°6 8.999 10 20 15 14x45 N°7 10.999 10 20 15 14x45 N°7 10.999 10 20 15 16x48 N°8 12.399 10 20 15 20x50 N°10 15.899 10 20 15 20x50 N°10 15.899 10 25 1 100x2.28" N°97 25.609 10	<u>า</u>
Cylindrical DIN1835A 6x36 N°3 4.249 10 20 14 10x40 N°5 7.299 10 20 15 12x45 N°6 8.999 10 20 15 12x45 N°6 8.999 10 20 15 12x45 N°6 8.999 10 20 15 12x45 N°7 10.999 10 20 15 14x45 N°7 10.999 10 20 15 14x45 N°7 10.999 10 20 15 14x45 N°8 12.399 10 20 15 18x48 N°9 14.399 10 20 15 20x50 N°10 15.899 10 20 15 20x50 N°10 15.899 10 25 - 1.00x2.28" N°97 25.609 10 25 - 32x60 N°13 32.609 10 <td></td>	
Cylindrical DIN1835A N 8x36 N°4 5.749 10 20 14 10x40 N°5 7.299 10 20 15 12x45 N°6 8.999 10 20 15 12x45 N°6 9.999 10 20 15 12x45 N°7 10.999 10 20 15 14x45 N°7 10.999 10 20 15 14x45 N°7 10.999 10 20 15 14x45 N°7 10.999 10 20 15 16x48 N°8 12.399 10 20 15 18x48 N°9 14.399 10 20 15 20x50 N°10 15.899 10 20 15 20x50 N°10 15.899 10 25 - 1.00x2.28" N°97 25.609 10 25 - 32x60 N°13 32.609 <td>_</td>	_
Cylindrical DIN835A 10x40 N°5 7.299 10 20 15 12x45 N°6 8.999 10 20 15 .50x178" N°94 9.699 10 20 15 14x45 N°7 10.999 10 20 15 14x45 N°7 10.999 10 20 15 14x45 N°7 10.999 10 20 15 16x48 N°8 12.399 10 20 15 18x48 N°9 14.399 10 20 15 20x50 N°10 15.899 10 20 15 20x50 N°10 15.899 10 20 15 20x50 N°10 15.899 10 20 15 100x2.28" N°96 19.509 10 25 12 100x2.28" N°97 25.609 10 25 12 32x60 N°13 32.609	
Cylindrical DIN1835A 112x45 N°6 8.999 10 20 15 14x45 N°7 10.999 10 20 15 14x45 N°7 10.999 10 20 15 14x45 N°7 10.999 10 20 15 16x48 N°8 12.399 10 20 15 18x48 N°9 14.399 10 20 15 20x50 N°0 15.899 10 20 15 20x50 N°10 15.899 10 20 15 20x50 N°10 15.899 10 20 15 20x50 N°10 15.899 10 20 15 100x2.28" N°97 25.609 10 25 1 125x2.28" N°97 25.609 10 25 1 32x60 N°14 40 10 25 1 63x90 N°15 40 10	
Cylindrical DIN1835A DIN6535HA .50x1.78" N°94 9.699 10 20 15 14x45 N°7 10.999 10 20 15 16x48 N°8 12.399 10 20 15 18x48 N°9 14.399 10 20 15 20x50 N°10 15.899 10 20 15 20x50 N°10 15.899 10 20 15 1.00x2.28" N°96 19.509 10 25 1 1.25x2.28" N°97 25.609 10 25 1 32x60 N°13 32.609 10 25 1 63x90 N°15 40 10 25 1 6x36 N°16 2.749 <td></td>	
Cylindrical DIN1835A 14x45 N°7 10.999 10 20 15 16x48 N°8 12.399 10 20 15 18x48 N°9 14.399 10 20 15 75x2.03" N°95 14.899 10 20 15 20x50 N°10 15.899 10 20 15 20x50 N°10 15.899 10 20 15 20x50 N°10 15.899 10 20 15 1.00x2.28" N°96 19.509 10 25 1 1.25x2.28" N°97 25.609 10 25 1 32x60 N°12 25.609 10 25 1 40x70 N°13 32.609 10 25 1 50x80 N°14 40 10 25 1 6x36 N°15 40 10 20 15 8x36 N°17 3.249 <t< td=""><td></td></t<>	
Cylindrical DIN1835A DIN6535HA Image: Marking the state of the state	
DIN1835A I8x48 N°9 14.399 10 20 15 DIN6535HA .75x2.03" N°95 14.899 10 20 15 20x50 N°10 15.899 10 20 15 20x50 N°10 15.899 10 20 15 20x50 N°10 15.899 10 20 15 1.00x2.28" N°96 19.509 10 25 16 1.00x2.28" N°97 25.609 10 25 16 32x60 N°12 25.609 10 25 16 40x70 N°13 32.609 10 25 16 63x90 N°15 40 10 25 16 63x90 N°15 40 10 25 15 8x36 N°16 2.749 10 20 15 8x36 N°17 3.249 10 20 15 10x40 N°18	
DIN6535HA 14.899 10 20 15 20x50 N°10 15.899 10 20 20 15 20x50 N°10 15.899 10 20 20 15 25x56 N°11 19.509 10 25 10 25 1.00x2.28" N°96 19.509 10 25 10 25 1.25x2.28" N°97 25.609 10 25 10 25 32x60 N°12 25.609 10 25 10 25 40x70 N°13 32.609 10 25 10 25 50x80 N°14 40 10 25 10 25 10 20 15 63x90 N°15 40 10 20 15 15 8x36 N°17 3.249 10 20 15 15 10x40 N°18 7.299 1	
20x50 N°10 15.899 10 20 25x56 N°11 19.509 10 25 1.00x2.28" N°96 19.509 10 25 1.25x2.28" N°97 25.609 10 25 32x60 N°12 25.609 10 25 40x70 N°13 32.609 10 25 50x80 N°14 40 10 25 63x90 N°15 40 10 25 6x36 N°16 2.749 10 20 15 8x36 N°17 3.249 10 20 15 10x40 N°18 7.299 10 20 15	
25x56 N°11 19.509 10 25 1.00x2.28" N°96 19.509 10 25 1.25x2.28" N°97 25.609 10 25 32x60 N°12 25.609 10 25 40x70 N°13 32.609 10 25 50x80 N°14 40 10 25 63x90 N°15 40 10 25 6x36 N°16 2.749 10 20 15 8x36 N°17 3.249 10 20 15 10x40 N°18 7.299 10 20 15	
1.00x2.28" N°96 19.509 10 25 1.25x2.28" N°97 25.609 10 25 32x60 N°12 25.609 10 25 40x70 N°13 32.609 10 25 50x80 N°14 40 10 25 63x90 N°15 40 10 25 6x36 N°16 2.749 10 20 15 8x36 N°17 3.249 10 20 15 10x40 N°18 7.299 10 20 15	
1.25x2.28" N°97 25.609 10 25 32x60 N°12 25.609 10 25 40x70 N°13 32.609 10 25 50x80 N°14 40 10 25 63x90 N°15 40 10 25 6x36 N°16 2.749 10 20 15 8x36 N°17 3.249 10 20 15 10x40 N°18 7.299 10 20 15	
32x60 №12 25.609 10 25 40x70 №13 32.609 10 25 50x80 №14 40 10 25 63x90 №15 40 10 25 6x36 №16 2.749 10 20 15 8x36 №17 3.249 10 20 15 10x40 №18 7.299 10 20 15	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
50x80 №14 40 10 25 63x90 №15 40 10 25 6x36 №16 2.749 10 20 15 8x36 №17 3.249 10 20 15 10x40 №18 7.299 10 20 15	
63x90 N°15 40 10 25 6x36 N°16 2.749 10 20 15 8x36 N°17 3.249 10 20 15 10x40 N°18 7.299 10 20 15	
6x36 №16 2.749 10 20 15 8x36 №17 3.249 10 20 15 10x40 №18 7.299 10 20 15	
8x36 N°17 3.249 10 20 15 10x40 N°18 7.299 10 20 15	
10x40 N°18 7.299 10 20 15	
12x45 N°19 8.999 10 20 15	
.50x1.78" N°98 9.699 10 20 15	
16x48 N°20 12.399 10 20 15	
18x48 N°21 14.399 10 20 15	
Weldon .75x2.03" N°99 14.899 10 20 15	
DIN1835B 20x50 N°22 15.899 10 20 15	
25x56 N°23 19.509 10 25	
1.00×2.28" N°100 19.509 10 25	
1.25x2.28" N°101 25.609 10 25	
32×60 N°24 25.609 10 25	
40x70 N°25 32.609 10 25	
50x80 N°26 40 10 25	
63x90 N°27 40 10 25	

DEEP HOLE DRILLING

					BRAZED GUNDRI	LL	SOLID CARBIDE
			Driver Code		F = CYLINDRIC	AL TUBE	GUNDRILL
			ŭ	etei	Equal Or Less	More	
			Vel	Max. Cutting Diameter	Than max. Cutting	Than max	k. F = Straightening
Driver Type	Drawing	DXL	D	Max. Cutti Diam	Diameter	Diamete	
		6x36	N°28	2.749	10	20	
		8x36	N°29	3.249	10	20	
		10x40	N°30	7.299	10	20	15
		12x45	N°31	8.999	10	20	15
Whistle Notch		16x48	N°32	12.399	10	20	15
DIN1835E	Ď	18x48	N°33	14.399	10	20	15
DINIOSSE		20x50	N°34	15.899	10	20	15
		25x56	N°35	19.509	10	25	
		32x60	N°36	25.609	10	25	
		40x70	N°37	32.609	10	25	
		6x36	N°38	2.749	10	20	15
		8x36	N°39	3.249	10	20	15
Whistle	_ ← L ► _	10x40	N°40	7.299	10	20	15
Notch		12x45	N°41	8.999	10	20	15
DIN6535HE		16x48	N°42	12.399	10	20	15
		18x48	N°43	14.399	10	20	15
		20x50	N°44	15.899	10	20	15
		CM1	N°45	9.599	10	20	
DIN228AK		CM2	N°46	14.599	10	20	
		CM3	N°47	21.499	10	25	
		CM4	N°48	29.499	10	25	
		CM1	N°49	9.599	10	20	
DIN228BK		CM2	N°50	14.599	10	20	
		CM3	N°51	21.499	10	25	
		CM4	N°52	29.499	10	25	
		6x30		2.749	10	20	20
		10x40	N°54	7.299	10	20	15
Central		16x45	N°55	12.399	10	20	
Clamping		.750x2.75″	N°56	14.899	10	20	
Surface 15°		25x70	N°57	19.509	10	25	
		1.00×2.75″	N°58	19.509	10	25	
		1.25×2.75″	N°59	25.609	10	25	
		1.50x2.75"	N°60	32.609	10	25	
Frontal Clamping Surface 15°		16×50	N°61	12.399	10	20	
		10×50 M6X0.5	N°62	7.299	10	20	15
		10×60 M6X0.5	N°63	7.299	10	20	
Cylindrical	L <u>M</u> ►l .	.50x1.97" M6x0.5	N°64	8.999	10	20	15
With Thread		16x80 M10X1	N°65	12.399	10	20	15
	A A	25×100 M16×1.5	N°66	19.509	10	25	
		36x120					
		M24x1.5	N°67	30.609	10	25	

							F F
			a		BRAZED GUNDRI	SOLID CARBIDE	
			Driver Code	2	F = CYLINDRIC	AL TUBE	GUNDRILL
			هر ۲	ng nete	Equal Or Less	More	
	_ .		rive	Max. Cutting Diameter	Than max. Cutting	Than max	5 5
Driver Type	Drawing	DXL			Diameter	Diameter	Extension
	→	10x68 M6x0.5	N°68	6.749	10	20	45
VDI Design		16x90 M10x1	N°69	10.799	10	20	15
J		25x112 M16x1.5	N°70	19.509	10	25	
		36x135 M24x1.5		30.609	10	25	
Central	I ≪− └─► ¥	25x70	N°72	19.509	10	25	
Clamping f Hexagonal		32x70	N°73	25.609	10	25	
Central Clamping Tapered		.50x1.50"	N°74	8.599	10	20	15
		16x70	N°75	12.099	10	20	15
		.75x2.75″	N°76	14.099	10	20	
		20x70	N°77	16.099	10	20	15
		.50x1.50"	N°78	9.699	10	20	
		.75x2.75″	N°79	14.899	10	20	
Frontal		1.00x2.75″	N°80	19.509	10	25	
Clamping		1.00x3.94"	N°81	19.509	10	25	
Surface 2°		1.25x2.75″	N°82	25.609	10	25	
		1.25x3.94"	N°83	25.609	10	25	
		1.50x2.75″	N°84	32.609	10	25	
		1.50x3.94″	N°85	32.609	10	25	
Trapezoidal Thread		16x112 Tr 16x1.5	N°86	13.599	10	20	
		20x126 Tr 20x2	N°87	17.099	10	20	
	+ +	28x126 Tr 28x2	N°88	25.599	10	25	
		36x162 Tr 36x2	N°89	32.599	10	25	
Spraymist		16x40	N°90	12.399	10	20	
Driver		25x50	N°91	19.509	10	25	
Driver	+	35x60	N°92	26.599	10	25	

Explanation of Solid Carbide Gundrills Description

Advantages of the Solid Carbide Gundrill:

- Drilling precision of IT7 to IT9
- Excellent straightness and concentricity
- Maintains high precision hole center alignment
- Surface roughness of 0.4-1.6 Ra is easily obtained
- Reboring operation is often unnecessary

ISCAR-GUNDRILLS Brazed Tip Gundrills

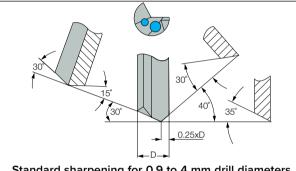
The ISCAR-GUNDRILLS line provides solutions for deep drilling by Gundrill method with brazed tip drills. This type of Gundrill consists of a solid carbide tip brazed to a steel shank. This style of Gundrill is available from 2.5 mm to 40 mm in different lengths according to table 6.11.2.1 and can be used on various types of materials.

Table 6.11.2.1

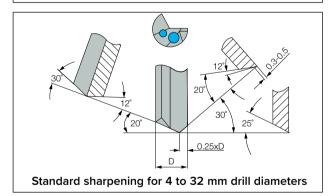
Drill Diameter (mm)	Max. Flute Length (mm)
2.50 to 3.09	1100
3.10 to 5.99	2500
6.00 to 11.39	3000
11.40 to 40.00	3500

STGD-.... Standard Brazed Tip Drills

STGD-... is a description of standard gundrills with a brazed tip belonging to the ISCAR-GUNDRILLS line. STGD-... gundrills are capable of drilling holes from 2.5 mm to 20 mm in sequential steps of 0.1 mm and holes from 20 mm to 40 mm in sequential steps of 1 mm. The sharpening of these gundrills depends on the diameter of the drill (table 6.11.2.2), and the profile is the same for all these gundrills ("General Sketch" according to table 6.11.2.3). The driver type can be selected according to table 6.11.2.4.


GD-.... Semi-Standard Brazed Tip Drills

GD-... is a description of semi-standard gundrills with a brazed tip belonging to the ISCAR-GUNDRILLS line. GD-... gundrills are capable of drilling holes from 2.5 mm to 40 mm in any sequential steps. Sharpening, profile, and driver type can be selected in any variant from standard tables respectively. There is an option for polishing and grade selection.


SPGD-.... Special Brazed Tip Drills

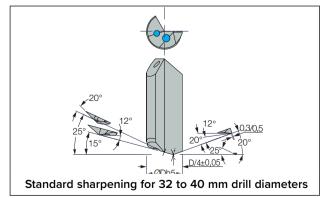
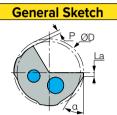

SPGD-... is a description of special gundrills with brazed tip belong **ISCAR-GUNDRILLS** line. SPGD-... gundrills are capable of drilling holes 2.5 mm to 40 mm in any sequential steps. Sharpening, profile, flute length and driver type can be selected in any variant. There is an option for polishing and grade selection.

Table 6.11.2.2 – Standard Sharpening

Standard sharpening for 0.9 to 4 mm drill diameters

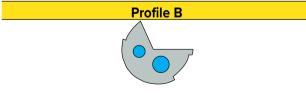


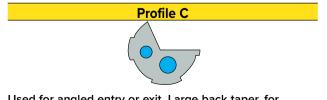
Note: For special or semi-standard gundrills, special geometries will be offered to match the application.

Table 6.11.2.3 – Drilling Head Profile

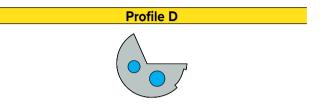
Standard Gundrill Head Profiles

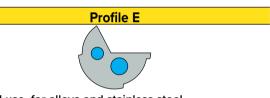
Drilling capacity and finish of the drilled hole are dependent on the geometrical shape of the drill head. Both the profile and the sharpening must be matched to the workpiece material.


All cross section profile parameters such as: P, La and 'a' must be precisely matched to the workpiece material properties.

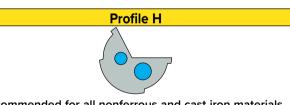

Standard form for most material types, particularly for materials with a tendency to shrink. Recommended for high precision bore tolerance and straightness. Maintains precise exit hole size. Recommended when extra burnishing is required.

Profile A

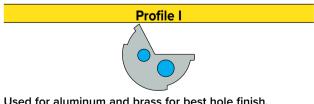

Suitable for cast iron (usually coated) and aluminum alloys. Can be used for cross drilling, angular entry or exit and for interrupted cut. Large coolant gaps between pads.


Excellent size control, for high precision hole tolerance. Used for cast iron and aluminum alloys.

Used for angled entry or exit. Large back taper, for shrinking materials such as high temperature and titanium alloys and stainless steel. Large coolant gaps between pads. The profile is defined when the tool is manufactured. Although regrinding may change the cutting geometry, the profile should remain the same.



Suitable for cast iron only. Very effective in grey cast iron (usually coated).



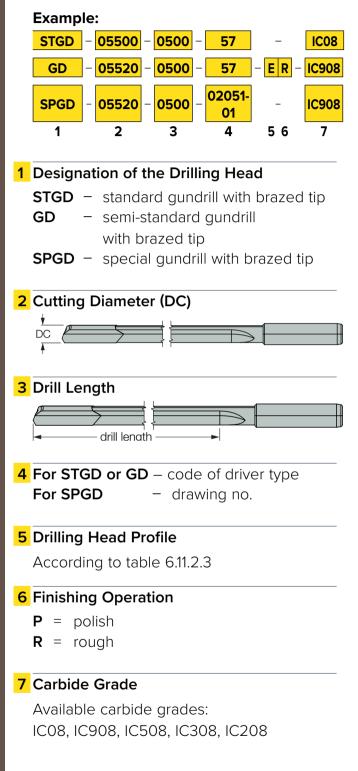
General use, for alloys and stainless steel. This profile eliminates the problem of the tool sticking in the hole after the outer corner dulls. Especially suitable for crankshaft and other forged materials. Recommended

for accurate hole straightness.

Recommended for all nonferrous and cast iron materials up 5 mm diameter. Sometimes used for wood and plastic with larger back taper.

Used for aluminum and brass for best hole finish. For intersecting holes and interrupted cut or when extra outer diameter support and burnishing is required.

Table 6.11.2.4 – Driver Type

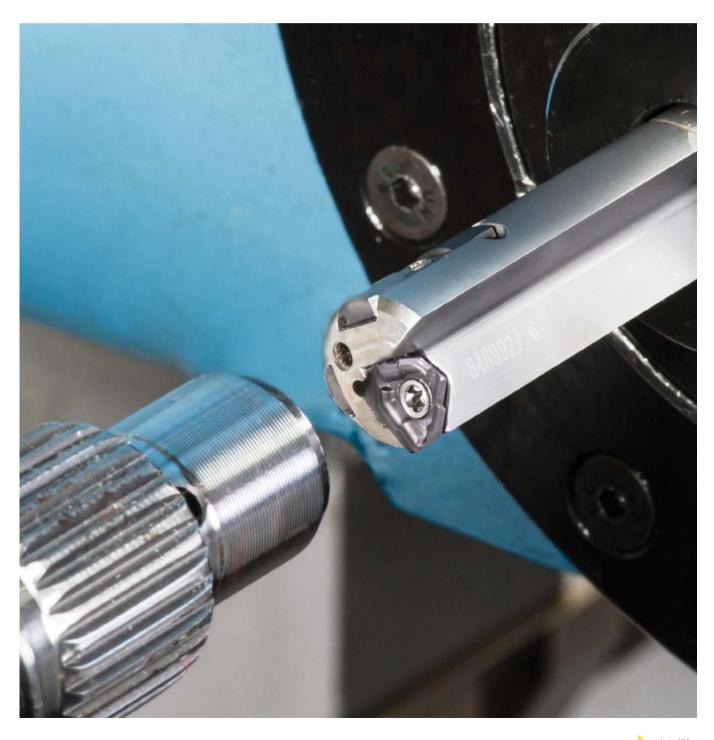

				_			
			0		BRAZED GUNDRI	LL	SOLID CARBIDE
			po	5	F = CYLINDRIC	AL TUBE	GUNDRILL
			Driver Code	Max. Cutting Diameter	Equal Or Less	More	
.	_ .	5)//	lrive	lax. utti ian	Than max. Cutting	Than max	
Driver Type	Drawing	DXL				Diameter	
		4x28	N°1	2.749	10	20	18
		5x28	N°2	3.249	10	20	15
		6x36	N°3	4.249	10	20	14
		8x36	N°4	5.749	10	20	14
		10x40	N°5	7.299	10	20	15
		12x45	N°6	8.999	10	20	15
		.50×1.78″	N°94	9.699	10	20	15
		14x45	N°7	10.999	10	20	15
Cylindrical		16x48	N°8	12.399	10	20	15
DIN1835A		18x48	N°9	14.399	10	20	15
DIN6535HA	т	.75x2.03″	N°95	14.899	10	20	15
		20x50	N°10	15.899	10	20	
		25x56	N°11	19.509	10	25	
		1.00x2.28"	N°96	19.509	10	25	
		1.25x2.28″	N°97	25.609	10	25	
		32x60	N°12	25.609	10	25	
		40x70	N°13	32.609	10	25	
		50x80	N°14	40	10	25	
		63x90	N°15	40	10	25	
		6x36	N°16	2.749	10	20	15
		8x36	N°17	3.249	10	20	15
		10x40	N°18	7.299	10	20	15
		12x45	N°19	8.999	10	20	15
		.50×1.78″	N°98	9.699	10	20	15
ł		16x48	N°20	12.399	10	20	15
Weldon		18x48	N°21	14.399	10	20	15
DIN1835B		.75x2.03″	N°99	14.899	10	20	15
DIN6535HB		20x50	N°22	15.899	10	20	15
		25x56	N°23	19.509	10	25	
		1.00x2.28"		19.509	10	25	
		1.25x2.28″		25.609	10	25	
		32x60	N°24	25.609	10	25	
		40×70	N°25	32.609	10	25	
		50x80	N°26	40	10	25	
		63x90	N°27	40	10	25	

Continued

					→ F ►		
			e		BRAZED GUNDRI		SOLID CARBIDE
			Driver Code	e	F = CYLINDRIC		GUNDRILL
			er (Max. Cutting Diameter	Equal Or Less	More	E – Stroightoning
	Drawing	DXL	Driv	Aax Cutt Diar	Than max. Cutting Diameter	Than max. Diameter	F = Straightening Extension
Driver Type	Diawing	6x36	N°28	2.749	10	20	EXTENSION
		8x36	N°29	3.249	10	20	
		10x40	N°30	7.299	10	20	15
		12x45	N°31	8.999	10	20	15
Whistle	└── └	16x48	N°32	12.399	10	20	15
Notch		18x48	N°33	14.399	10	20	15
DIN1835E	· · · · · · · · · · · · · · · · · · ·	20x50	N°34	15.899	10	20	15
		25x56	N°35	19.509	10	25	
		32x60	N°36	25.609	10	25	
		40x70	N°37	32.609	10	25	
		6x36	N°38	2.749	10	20	15
		8x36	N°39	3.249	10	20	15
Whistle	∙── L ──►	10x40	N°40	7.299	10	20	15
Notch		12x45	N°41	8.999	10	20	15
DIN6535HE		16x48	N°42	12.399	10	20	15
		18x48	N°43	14.399	10	20	15
		20x50	N°44	15.899	10	20	15
		CM1	N°45	9.599	10	20	
DIN228AK		CM2	N°46	14.599	10	20	
		CM3	N°47	21.499	10	25	
		CM4 CM1	N°48 N°49	29.499 9.599	10 10	<u>25</u> 20	
		CM1 CM2	N°50	9.599	10	20	
DIN228BK	€	CM2 CM3	N°51	21.499	10	25	
		CM4	N°52	29.499	10	25	
		6x30	N°53	2.749	10	20	20
		10x40	N°54	7.299	10	20	15
		16x45	N°55	12.399	10	20	
Central		.750x2.75″	N°56	14.899	10	20	
Clamping Surface 15°	<u>└╫╴╎──</u> ┟╶╫┍ ▲	25x70	N°57	19.509	10	25	
Surface 15		1.00x2.75"	N°58	19.509	10	25	
		1.25x2.75″	N°59	25.609	10	25	
		1.50x2.75″	N°60	32.609	10	25	
Frontal Clamping Surface 15°		16x50	N°61	12.399	10	20	
		10x50 M6X0.5	N°62	7.299	10	20	15
		10×60 M6X0.5	N°63	7.299	10	20	
		.50x1.97″					1
Cylindrical		M6x0.5	N°64	8.999	10	20	15
With Thread		16x80 M10X1	N°65	12.399	10	20	15
	- *	25×100 M16×1.5	N°66	19.509	10	25	
		36x120	N°67	30.609	10	25	
		M24x1.5		00.000		20	

			đ		BRAZED GUNDRI		SOLID CARBIDE
			po	5	F = CYLINDRIC	AL TUBE	GUNDRILL
Driver Type	Drawing	DXL	Driver Code	Max. Cutting Diameter	Equal Or Less Than max. Cutting Diameter	More Than max Diameter	5 5
	-	10x68 M6x0.5	N°68	6.749	10	20	
		16x90 M10x1	N°69	10.799	10	20	15
VDI Design		25x112 M16x1.5	N°70	19.509	10	25	
	• '	36x135 M24x1.5	N°71	30.609	10	25	
Central		25x70	N°72	19.509	10	25	
Clamping Hexagonal		32x70	N°73	25.609	10	25	
Central		.50x1.50"	N°74	8.599	10	20	15
Clamping		16x70	N°75	12.099	10	20	15
Tapered		.75x2.75″	N°76	14.099	10	20	
Тарегеа		20x70	N°77	16.099	10	20	15
		.50x1.50"	N°78	9.699	10	20	
		.75x2.75″	N°79	14.899	10	20	
Frontal		1.00x2.75″	N°80	19.509	10	25	
Clamping		1.00x3.94"	N°81	19.509	10	25	
Surface 2°	<u>د ا</u>	1.25x2.75″	N°82	25.609	10	25	
		1.25x3.94"		25.609	10	25	
		1.50x2.75″	N°84	32.609	10	25	
		1.50x3.94"	N°85		10	25	
		16x112 Tr 16x1.5	N°86	13.599	10	20	
Trapezoidal Thread		20x126 Tr 20x2		17.099	10	20	
	······································	28x126 Tr 28x2	N°88	25.599	10	25	
		36x162 Tr 36x2		32.599	10	25	
Spraymist		16x40	N°90	12.399	10	20	
Driver	<u>⊨</u> L	25x50	N°91	19.509	10	25	
Billion	т	35x60	N°92	26.599	10	25	

Explanation of Brazed Tip Solid Carbide Gundrills Description


Advantages of the Solid Carbide Gundrill:

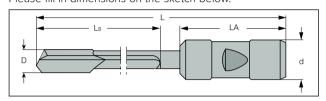
- Drilling precision of IT7 to IT9
- Excellent straightness and concentricity
- Maintains high precision hole center alignment
- Surface roughness of 0.4-1.6 Ra is easily obtained
- Reboring operation are often unnecessary

ISCAR-GUNDRILLS Cutting Conditions for Gun Drilling Methods

The main elements of cutting conditions for deep drilling are cutting speed and feed. When drilling holes, it is important to select the right cutting conditions in which the tool will work normally, i.e., most efficiently, in order to save the tool from premature wear, taking into account maximum productivity. Recommended initial conditions are shown in the table below, according to insert size, chip breaker form, and workpiece material.

When using the small diameter drills, it is crucial to adhere closely to the recommended drilling parameters.

0 0				ġ									
9 Muterial 0<				Ž م	-			Feed vs	Drill D	ameter [n	m/rev]		
9 Muterial 20 50 0-2.0-2.5 0-2.0-2.5 0-3.0-5 0-56 0-8-12 0-12.52.5 0-22.53 0-3.0-5 0-8-12 0-12.52.5 0-22.53 0-3.0-5 0-56 0-8-12 0-12.52.5 0-22.53 0-30.0 0.00				lon	eec			Teeu V3					
sec:195 constraint 1 2000 00000 00000 0000	ISO	Material	Condition		Cutting Sp V _c [m/min	D=2.0-2.5	D=2.5-3.5	D=3.5-5	D=5-8	D=8-12.5	D=12.5-22.5	D=22.5-30	and
Statistics Generation of statistical state Generation of statistical state Generation of statistical state Generation of statistical state Generation of state <th></th> <th><0.25% C</th> <th>annealed</th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		<0.25% C	annealed	1									
onst steel, rec cuting steel Cutops (cutop)		non-alloy ≥0.25% C	annealed	2									
cost steel, free cutting steel 205% C tempered quenched and steel (ess than 5% of alloying clears) cost of quenched and steel (ess than 5% of quenched and quenched and tot steel and tot steel and t		steel and <0.55% C	quenched and	З		0.002-		0.01-	0.02-				013-
steel >>0.55% C quanched and tempered 5		cast steel,	tempered		70-100		0.003-0.01			0.03-0.05	0.05-0.08	0.08-0.13	
N Standbask end		, , ,		4									
P Invalues alloying elements alloying elements alloying elements alloying elements alloying elements alloying elements alloying elements alloying elements alloying elements alloying elements and cast steel and tool steel annealed (materistic elemented elemented elemented elemented elemented elemented elemented elemented alloying elements and cast steel and tool steel annealed (materistic elemented e		20.55% €		5									
P wiloy and cast steel (esc) with a 5% of aloying elements) quenched and tempered 7 8 6 0.002 0.003 0.003 0.008 0.008 0.002 0.003 0.009 0.002 0.003 0.003 0.004 0.002 0.003 0.003 0.004 0.002 0.003 0.003 0.004 0.007 0.002 0.02 0.003 0.03-00 0.003 0.03-00 0.003 0.03-00 0.003 0.03-00 0.003 0.03-00 0.003 0.03-00 0.004 0.007 0.002 0.02-00 0.003 0.03-00 0.007-0.02 0.02-003 0.03-005 0.05-0.09 0.09-013 0.13-018 M Statiless steel and cast steel iterritic / pacifitic 16 pacifitic pacifitic <thp< td=""><td></td><td></td><td>· ·</td><td>6</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thp<>			· ·	6									
aloying elements) tempered 8 0.002- 0.003 0.003- 0.008 0.002- 0.008 0.03- 0.02 0.03- 0.03 0.03-	Р												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					60-80	0.000	0.000	0.000	0.00				0.10
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		alloying elements)	tempered	9						0.03-0.05	0.05-0.08	0.08-0.12	
and tool steel "tempered 11 40-60 weak weak </td <td></td> <td>5 5</td> <td>annealed</td> <td>10</td> <td></td> <td>0.005</td> <td>0.000</td> <td>0.02</td> <td>0.00</td> <td></td> <td></td> <td></td> <td>0.2</td>		5 5	annealed	10		0.005	0.000	0.02	0.00				0.2
Indicator Indicator <thindicator< th=""> Indicator <thindicator< th=""> Indicator Indicator</thindicator<></thindicator<>		· · ·	· ·	11	40-60								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		and tool steel	•										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		stainless steel		12	10 60	0.003-	0.004-	0.007-	0.02-	0.02.0.05		0.00.012	0.13-
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		and cast steel		13	40-00	0.004	0.007	0.02	0.03	0.03-0.03	0.05-0.05	0.03-0.13	0.18
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		stainless steel			20.00	0.003-	0.004-	0.007-	0.02-			0.00.012	0.13-
gray cast iron (GG) pearlit / mattensitic 16 mattensitic 0.002 0.003 0.003-0.01 0.01 0.02 0.04-0.07 0.07-0.12 0.12-017 0.17-0.29 nodular cast iron (GGG) ferritic 17 0.003-0.01 0.02 0.004-0.07 0.04-0.07 0.07-0.12 0.12-017 0.12	IVI	and cast steel	austennic, duplex		30-60	0.004	0.007	0.02	0.03	0.03-0.05	0.05-0.09	0.09-0.13	0.18
Image: Section (GGG) Image: Se				15									
k indular cast iron (GGG) ferritic 17 pearlitic 70-00 pearlitic 0.002- 0.003 0.01- 0.02 0.02- 0.02 0.04-0.07 0.07-012 0.12-017 0.17- 0.29 aluminum- wrought alloys not hardenable 21 hardenable 100- 150 100- 150 0.002- 0.003 0.01- 0.02 0.04-0.07 0.07-012 0.12-017 0.17- 0.29 aluminum- wrought alloys indt hardenable 22 hardenable 100- 150 100- 150 0.002- 0.003 0.01- 0.004 0.01- 0.07 0.07- 0.13 0.23-0.36 0.36-0.52 0.52- 1.00 N copper alloys 5 figh temperature 26 100- 150 0.002- 0.004 0.00- 0.004 0.01- 0.02 0.07- 0.07 0.13-0.23 0.23-0.36 0.36-0.52 0.52- 1.00 N copper alloys brass 27 electrolytic copper 100- 150 0.002- 0.004 0.00- 0.02 0.00- 0.02 0.01- 0.02 0.02- 0.02 0.02- 0.00 0.02- 0.02 0.02-0.03 0.03-0.05 0.05-0.08 0.08- 0.09 N copper alloys fiber plastics based annealed 37 alloys		gray cast fron (GG)		16	70 100								
iron (GGG) pearlitic 18 pearlitic 0.003 0.02 0.04 alu and hardenable 21 alu alu alu and hardenable 21 and hardenable 23 and hardenable and hardenable 23 and hardenable and harden	v	nodular cast		17		0.002-	0.003.0.01	0.01-	0.02-	0.04.0.07	0.07.012	012 017	0.17-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ĸ				/0-100 	0.003	0.003	0.02 0.04	0.04	0.04	0.07 0.12 0.12 0.17	0.12-0.17	0.29
malleable cast iron pearlitic 20 ico ico <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		malleable cast iron	pearlitic										
$ \frac{ x ^{-1} ^{$		aluminum-	not hardenable	21								0.36-0.52	
aluminum- cast alloys 412% Si >12% Si high temperature not hardenable big high temperature 23 high temperature 150 0.002 0.003 0.002- 0.003 0.02- 0.07 0.07- 0.13 0.13-0.23 0.23-0.36 0.36-0.52 0.52- 1.00 N 2000000000000000000000000000000000000		wrought alloys	hardenable		100								
cast alloys Inardenable 24 N 0.003 0.003-0.02 0.07 013 0.13-0.23 0.23-0.36 0.36-0.32 1.00 N index alloys index alloys index alloys index alloys index alloys 0.003 0.003-0.02 0.07 013 0.13-0.23 0.23-0.36 0.36-0.32 1.00 N index alloys index alloys index alloys index alloys index alloys index alloys 0.003 0.003-0.02 0.07 013 0.13-0.23 0.23-0.36 0.36-0.32 1.00 N copper index alloys index olds index alloys index alloys index alloys 0.003 0.004-0.01 0.01 0.02 0.04-0.07 0.07-0.11 0.11-0.16 0.16-0.03 0.03-0.05 0.05-0.08 0.08-0.09 0.02 0.004-0.01 0.002 0.004-0.02 0.004-0.02 0.002-0.03 0.03-0.05 0.05-0.08 0.09 0.09 0.02 0.02-0.03 0.03-0.05 0.05-0.08 0.08-0.09 0.09 0.02-0.03 0.03-0.05		aluminum- <12% Si	not hardenable			0.002-		0.02-		0.13-0.23	0.23-0.36		0.52-
$ N \ \ \ \ \ \ \ \ \ \ \ \ \$					0.003		$ ()()() _{-}()())$						
N copper alloys 51% Pb free cutting 26 150 copper (0.003- 0.004) copper (0.003- 0.004-0.01) copper (0.002- 0.004) copper (0.002- 0.004) copper (0.002- 0.004) copper (0.02- 0.004) copper		>12% Si	high temperature	25	100								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			free cutting	26									
Image: conditional conditindef conditeneal conditional conditional conditional conditional	N		brass	27									
non metallic duroplastics, fiber plastics 29		alloys	electrolytic	28	1	0.003-		0.01-	0.02-				0.16-
non metallic duroplastics, fiber plastics 29 <			copper	20	80-120	0.003	0.004-0.01			0.04-0.07	0.07-0.11	0.11-0.16	
Non metallic hard rubber 30 40-60 0.002 0.002- 0.004 0.009 0.009 0.02-0.03 0.03-0.05 0.05-0.08 0.08- 0.09 high temperature alloys Fe based annealed 31 hardened A				29									
Image: section of the sectio		non metallic					0.002-	0.004-	0 009-				0.08-
high temperature alloys Fe based hardened 32 hardened 33 hardened 33 hardened 33 hardened 33 hardened 33 hardened 34 hardened 35 hardened 0.002- 0.004 0.004- 0.009 0.009- 0.02 0.02-0.03 0.03-0.05 0.05-0.08 0.08- 0.09 0.09 H hardened steel hardened 38 hardened 39 chilled cast iron 37 0.002- 0.002 0.004- 0.004 0.009- 0.02 0.02-0.03 0.03-0.05 0.05-0.08 0.08- 0.09			hard rubber	30	40-60	0.002				0.02-0.03	0.03-0.05	0.05-0.08	
high temperature alloys hardened 32 annealed 33 hardened 33 hardened 33 hardened 34 hardened 36 hardened 34 hardened 36 hardened 34 hardened 36 hardened 37 hardened 37 hardened 37 hardened 38 hardened 39 hardened 30 harde		Fe based	annealed	31									
A Ni or Co based hardened 34 (ast 25-50 0.002 0.004 0.002- 0.004 0.004- 0.009 0.02-0.03 0.03-0.05 0.05-0.08 0.08- 0.09 titanium alloys alpha+beta alloys, hardened 37			hardened		1								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		l ' Nior Co											
$\frac{ }{ } = \frac{ }{ } = \frac{ }{ } = $	s					0.002				0.02-0.03	0.03-0.05	0.05-0.08	
titanium alloysalpha+beta alloys, hardened37 \sim <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0.004</td><td>0.009</td><td>0.02</td><td></td><td></td><td></td><td>0.09</td></t<>							0.004	0.009	0.02				0.09
Image: Marge and Steel Aardened 37 Image: Marge and Steel Aardened 38 Image: Marge and Steel No.002 0.002- 0.004- 0.009- 0.02-0.03 0.03-0.05 0.05-0.08 0.08- 0.09- 0.02-0.03 0.03-0.05 0.05-0.08 0.08- 0.09- 0.02-0.03 0.03-0.05 0.05-0.08 0.08- 0.09- 0.02-0.03 0.03-0.05 0.05-0.08 0.09- 0.09- 0.02-0.03 0.03-0.05 0.05-0.08 0.09- 0.09- 0.02-0.03 0.03-0.05 0.05-0.08 0.09- 0.09- 0.02-0.03 0.03-0.05 0.05-0.08 0.09- 0.09- 0.02-0.03 0.03-0.05 0.05-0.08 0.09- 0.09- 0.02-0.03 0.03-0.05 0.05-0.08 0.09- <		titanium allovs			>								
hardened steel hardened 38 hardened steel hardened 39 chilled cast iron cast 40		titanium alloys		37									
hardened steel hardened 39 chilled cast iron cast 40				38						09-0000000			
Chilled cast iron Cast 40 25-50 0.002 0.004 0.009 0.02 0.02-0.03 0.03-0.05 0.05-0.08 0.09		hardened steel				0.000	0.002-	0.004-	- 0.009-		0.00.0.05		0.08-
cast iron hardened 41	Ħ	chilled cast iron	cast		25-50	0.002				0.02-0.03	0.03-0.05	0.05-0.08	
		cast iron	hardened	41									

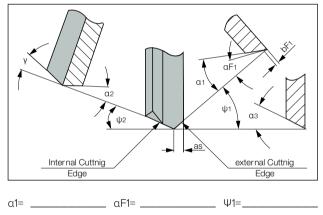

ISCAR-GUNDRILLS Inquiry Form for Gundrills

Gundrill Inquiry Form

1. Tool

Quantity ___

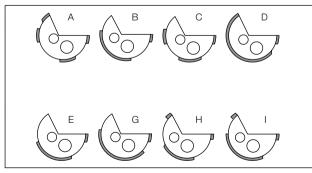
Nominal diameter and tolerance ______ Please fill in dimensions on the sketch below.


Driver

For standard drivers please use codes from page 253-255

Code No.

 \Box Special, please attach sketch and specifications.


Grind: \Box special (fill in the dimensions and angles below).

α2=_____ bF1=_____ Ψ2=____

α3= _____ as= __

 \Box Standard (see page 252)

_____ γ= __

2. Workpiece

(If possible, please attach a drawing)

2.1 Material

Material description (DIN material number or any other standard):

Hardness and properties:

Short chips

Long chips	

2.2 Hole Type

Blind hole	Drilling into pre-hole		
Angled entry	Drilling into solid		
Boring	□ Angled e	exit	
Drilling depth	mm	Hole tolerance	

□ Stationary

□ Stationary

2.3 Application:

Workpiece:	
Fool:	

Rotating

3. Machine

3.1 Technical Data

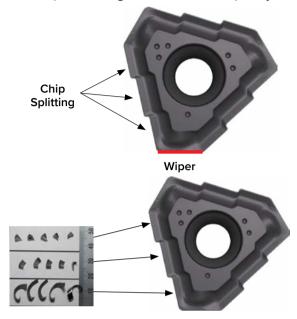
Machine type.

Power_____kW

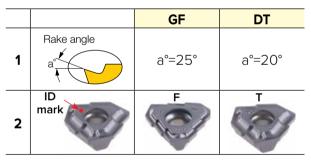
3.2 Cutting Data:

Cutting speed V_c .		_m/mi	n	
Revolutions Nmin .		_RPM,	Nmax	RPM
Feed Fmin		_mm/r	ev,	
Fmax		_mm/r	ev	
Feed rate VF		_mm/r	nin	
Coolant:				
🗌 Oil	□ Soluble oil	[Other	
Coolant pressure			bar	
Sketch of drilling application				

Note: It may be necessary to change several of the parameters that you indicated based on our experience with your application.

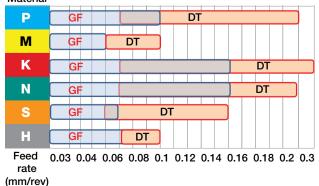

TRI-DEEP Indexable Inserts

The **ISCAR TRI-DEEP** line provides solutions with indexable inserts for all deep drilling methods, such as: Gundrilling single and double tube systems. The **ISCAR TRI-DEEP** line is based on two types of indexable inserts: TOGT with 3 cutting edges and LOGT with 2 cutting edges. The main features of this indexable solution are cost effectiveness and functionality.

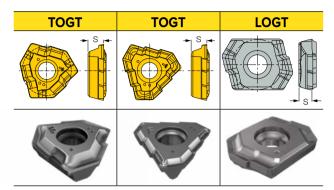


TOGT

The TOGT inserts features chip splitting cutting edges, a positive rake chip breaker, and a wiper for high hole surface quality.



The TOGT inserts are available with 2 types of chipformers: TOGT...DT and TOGT...GF.


The selection of the GF or DT chipformer depending on the feed rates (mm/rev) according to the recommendations below:

Recommended Feed Rate of Each Chipbreaker for Various Materials Material

LOGT

The LOGT inserts feature 2 chip splitting cutting edges, a positive rake chip breaker, and a wiper for high hole surface quality. Basic Dimensions of TOGT and LOGT Inserts

- IC inscribe circle diameter
- RE corner radius
- PL point length
- S insert thickness

TOGT and LOGT Advantages

- Highly accurate peripherally ground insert, providing high hole diameter accuracy of IT10
- Produces narrow chips for effective chip evacuation, enabling higher feed rates compared to other Gundrills available in the market
- A wiper on the insert provides extra fine surface finish
- Direct insert mounting no adjustment needed for accurate hole diameter

TRI-DEEP GF Chipformer Advantages

- Chipformer with positive rake results in an easy cut
- Advantageous for Gundrill machines with low motor torque that can run only with low feed rates
- Avoids long and curly chips that may jam in the drill gullets and damage the tool
- Helps improve surface quality due to small chips that are easily evacuated
- Effective chip control even at low feeds

261

TRI-DEEP Solution for Gun Drilling Methods

ISCAR TRI-DEEP includes Gundrills and brazed Gundrill heads with indexable inserts.

TRI-DEEP - Gundrills

GD-DH... is a description of gundrills belonging to the **ISCAR TRI-DEEP** family for deep drilling. GD-DH... gundrills are capable of drilling holes from 12 mm to 32 mm in diameter and are available with different driver types. Gundrills GD-DH... up to a diameter of 13.5 mm are suitable for mounting LOGT inserts with 2 cutting edges for chip separation and are available in 15, 20, 25 drilling lengths to diameter ratios. Gundrills GD-DH... from 14 mm diameter are suitable for mounting TOGT inserts that feature 3 chip splitting cutting edges and are available in 10, 15, 20, 25 drilling lengths to diameter ratios.

Explanation of Gundrills GD-DH... Description

Example:

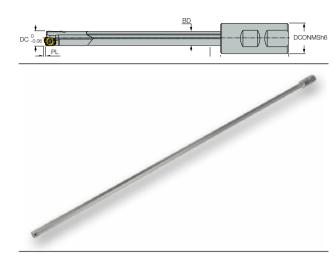
1 Designation of Drilling Head

GD-DH - gundrill for deep drilling

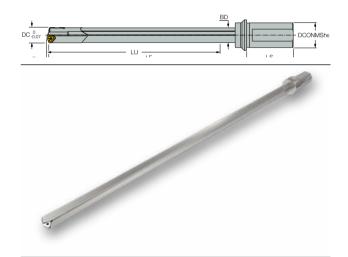
2 Cutting Diameter (DC)

3 Ratio of Drilling

length to diameter (LU/DC)


4 Driver Type

5 Insert Type


- **06** LOGT 06...
- **07** TOGT 07...
- ••• TOGT ...
- **13** TOGT 13...

Basic Dimensions of Gundrill GD-DH...

Gundrills Carrying the LOGT Indexable Insert

Gundrills Carrying the TOGT Indexable Insert

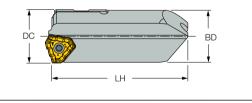
DC -	-	cutting diameter
LU -	_	usable length
DCONMS -	-	connection diameter
		machine side
BD -	-	body diameter
LF -	_	functional length
PL -	-	point length
LS -	-	shank length
OAL -	-	overall length
TH -	-	thread designation

TRI-DEEP - Brazed Head for Gun Drilling

GDH- ...MKT is a brazed cutting head for gundrills belonging to the **ISCAR TRI-DEEP** family. GDH-... MKT heads open the possibility of replacing the drilling head by re-brazing without replacing the whole tool. GDH-... MKT brazed drilling heads are capable of drilling holes from 14 mm to 28 mm in diameter and are suitable for mounting TOGT inserts that feature 3 chip splitting cutting edges.

Explanation of Brazed Head for Gun Drilling GDH-...MKT Description

Example:


GDH	-	14.00	MKT
1		2	

1 Designation of the Drilling Head

GDH - brazed cutting head for gundrills

2 Cutting Diameter (DC)

Basic Dimensions of Brazed Head for Gun Drilling GDH-... MKT

- DC cutting diameter
- LH head length
- BD body diameter

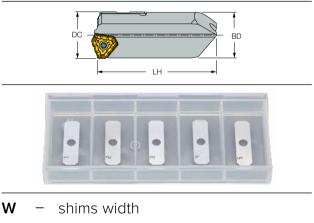
TRI-DEEP Drill Diameter Adjustment Shims for Gundrills

ISCAR TRI-DEEP includes sets of shims for gundrills easy and fast adjustment of drill diameter and helps minimize the need for special gundrill tools. The shims make it possible to increase the diameter of drills from 0.01 mm to 0.1 mm in sequential steps of 0.01 mm. The set of shims are adapted for Gundrills with diameters range of 12 mm to 28 mm. The shims need to be mounted under the guide pads that are assembled on the **TRI-DEEP** gundrills.

ISCAR TRI-DEEP shims ensure easy and fast drill diameter adjustment in a range of 0.01 up to 0.1 mm

Explanation of Shims for ISCAR TRI-DEEP Gundrills Description

Example:



1 Shims Width (W)

- **GP04** 4 mm width of shims
- GP05 5 mm width of shims
- GP06 6 mm width of shims

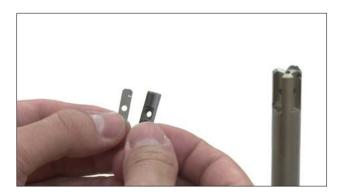
Basic Dimensions of Shims for ISCAR TRI-DEEP Gundrills

OAL - overall length

Assembly Instructions

Step 1

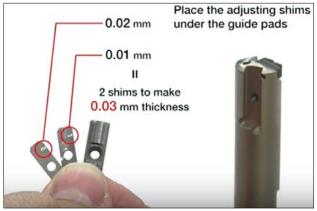
Measure the DTD drill diameter between the measuring guide pad and the insert's cutting edge. If a pre-setter is not available, use a micrometer or caliper. For a precise drill diameter measurement, it is recommended to test-drill a hole and measure the hole diameter.



Step 2

Select the shim combinations according to the recommended shim combinations for various diameters to obtain the required hole diameter.

Take into consideration that the actual diameter of the drilled hole tends to be slightly larger (usually +20 μ m to +30 μ m) than the drill's nominal diameter - i.e., add 20 μ m - 30 μ m to the measured drill diameter in Step 1 above before the final drill diameter.



Step 3 Remove the guide pads

Step 4

Install the adjusting shims underneath the guide pads, respectively. Put the guide pads back on the tool.

Step 5

Measure the drill diameter again to confirm that the required diameter is obtained on the DTD.

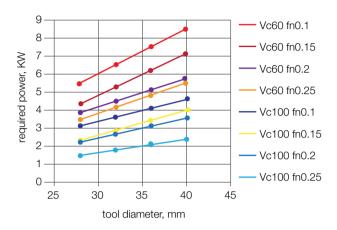
Step 6

Drill a hole to confirm that the required hole diameter is achieved.

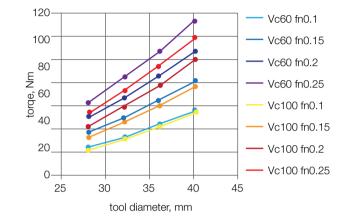
Shim Combinations for Various Diameters

Diameter Adjustments	Shim (s) for Measuring	Shim ⁽⁸⁾ for Supporting	Number of Shim Sets
(mm)	Guide Pad	Guide Pad	Needed
+0.01	0.01	-	1
+0.02	0.02	0.01	1
+0.03	0.03	0.01+0.02	1
+0.04	0.04	0.02+0.03	1
+0.06	0.05	0.02+0.03	1
+0.06	0.01+0.05	0.02+0.04	1
+0.07	0.02+0.05	0.03+0.04	1
+0.08	003+0.06	0.04+0.04	2
+0.09	0.04+0.05	0.04+0.05	2
+0.10	0.05+0.05	0.04 +0.04 +0.01	2

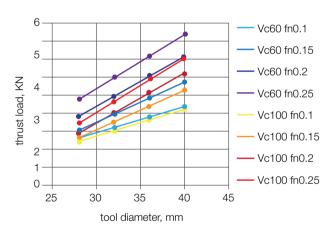
TRI-DEEP Cutting Conditions for Gun Drilling Methods

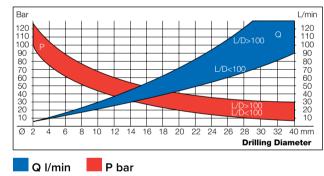

The main elements of the cutting conditions for deep drilling are cutting speed and feed. When drilling holes, it is important to select the right cutting conditions in which the tool will work normally, i.e., most efficiently, in order to save the tool from premature wear, taking into account maximum productivity. Recommended initial conditions are shown in the table below, according to insert size, chip breaker form and workpiece material.

				٦ţ						TOGT							
				trenç	뛰				Feed per i	insert size "(GF" & "DT"						
				le Si n²¹	less	nial No		06 07 08	09	10	11	12	13				
ISO	Mater	ial	Condition	Tensile Strength [N/mm ²]	Hardness HB	Material Group No.	V m/min	00 07 08	09			12	13				
-	Mater	<0.25% C	annealed	420	125	20	m/min			mm/rev							
	non-alloy	<0.25% C ≥0.25% C	annealed	650	120	2											
	steel and cast steel,	<0.55% C	quenched and tempered	850	250	3		0.04-0.08 0.08-0.14	0.04-0.10 0.08-0.16	0.06-0.10 0.08-0.16	0.06-0.10 0.08-0.16	0.06-0.12					
	free cutting		annealed	750	220	4											
	steel	≥0.55% C	quenched and tempered	1000	300	5											
	low alloy and	cast stool	annealed	600	200	6				0.04-0.12							
Ρ	(less than 5% of		quenched and	930	275	7	80-120			0.06-0.20							
	alloying eleme		tempered	1000	300	8	-										
			· · ·	1200	350	9	-		1	1	[1					
	high alloyed s	teel, cast	annealed	680	200	10	-										
	steel and tool	steel	quenched and tempered ferritic /	1100	325	11	-	0.04-0.08 0.08-0.14		0.04-0.10 0.08-0.16	0.06-0.10 0.08-0.16	0.06-0.10 0.08-0.16	0.06-0				
	stainless steel		martensitic	680	200	12				0.06-0.14	0.06-0.14	0.06-0.14	0.06-0.14	0.00-0.14	0.00-0.10	0.00-0.10	0.08-0.10
	and cast steel		martensitic	820	240	13											
М	stainless steel and cast steel		austenitic, duplex	600	180	14	50-100	0.02-0.06 0.04-0.12	0.02-0.06 0.04-0.12	0.02-0.06 0.04-0.12	0.02-0.06 0.04-0.12	0.02- 0.04					
			ferritic / pearlitic		180	15											
	gray cast iron	(GG)	pearlitic / martensitic		260	16	50-100	0.03-0.15	0.02.015	0.05.019	0.05-0.18	0.05	-0.18				
Κ	nodular cast ir	on (GGG)	ferritic		160	17	80-120	0.03-0.15		0.03-0.15 0.05-0.18 0.08-0.25 0.08-0.25	0.08-0.30	0.05					
			pearlitic		250	18						0.00 0.00					
	malleable cast	iron	ferritic		130	19	-										
	- I		pearlitic not hardenable		230 60	20 21											
	aluminum- wrought alloys		hardenable		100	22											
			not hardenable		75	23	-										
	aluminum-	≤12% Si	hardenable		90	24	-										
	cast alloys	>12% Si	high temperature		130	25											
Ν		>1% Pb	free cutting		110	26	80-160	0.03-0.15	0.03-0.15	0.03-0.18	0.05-0.18	0.03	-0.18				
	copper		brass		90	27	00-100	0.08-0.20	0.08-0.20	0.08-0.20	0.08-0.20	0.08-	-0.20				
	alloys		electrolytic copper		100	28											
	non motellie		duroplastics,			29											
	non metallic		fiber plastics hard rubber			30											
			annealed		200	31											
	high	Fe based	hardened		280	32											
S	temperature		annealed		250	33	20-50	0.08-0.14	0.08-0.16	0.08-0.16	0.08-0.16	0.08	-0.16				
	alloys	Ni or Co	hardened		350	34											
		based	cast		320	35											

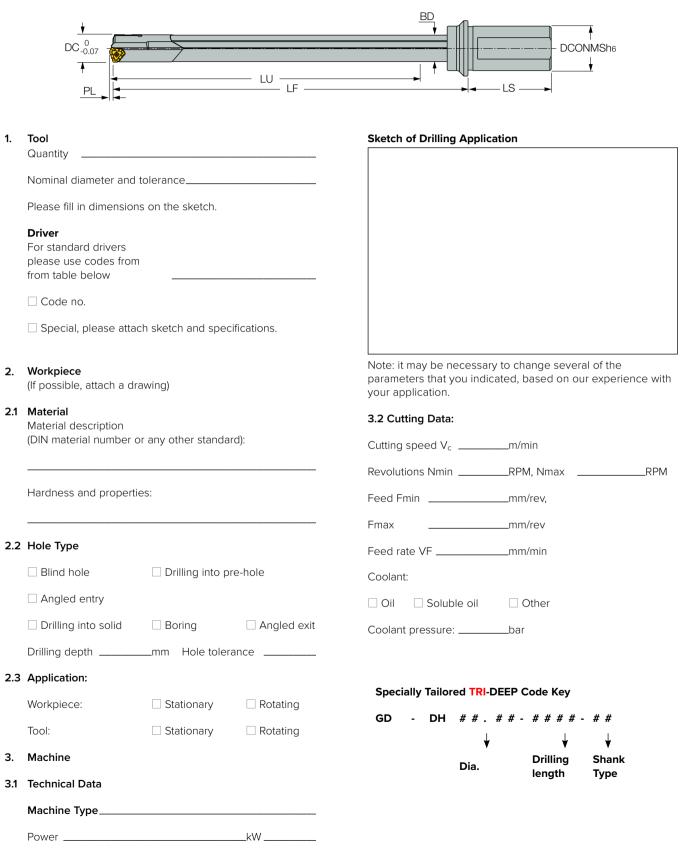

TRI-DEEP Machine Requirements for Gun Drilling Methods

Machine requirements for deep drilling by Gundrill methods using **TRI-DEEP** family tools are shown in the table below.


Net Power


Torque

Feed Force


Coolant Pressure and Volume

TRI-DEEP Inquiry Form for Gundrills

Driver Codes and Technical Data

لل ال
7
$\overline{\alpha}$
$\overline{}$
ш
\bigcirc
Ť
Δ
ш
Ш

Driver Type	Drawing	ØD x L	Driver Code
		.75x2.03″	95
		20x50	10
Cylindrical		25x56	11
DIN1835A		1.00x2.28"	96
DIN6535HA		1.25x2.28″	97
		32x60	12
		40x70	13
		.75x2.03″	99
		20x50	22
Weldon		25x56	23
DIN1835B		1.00x2.28"	100
DIN6535HB		1.25x2.28″	101
		32x60	24
		40x70	25
		20x50	34
Whistle		25x56	35
Notch	↓	32x60	36
DIN1835E	↓	40x70	37
DIN228AK		CM1	45
		CM2	46
		CM3	47
		CM4	48
		CM1	49
		CM2	50
DIN228BK		CM3	51
		CM4	52
		.750x2.75″	56
Central	┟╶╼┧╻	25x70	57
Clamping		1.00x2.75"	58
Surface 15°	▎└─└─┴─┴	1.25x2.75"	59
		1.50x2.75"	60
Frontal Clamping Surface 15°		16x50	61
Cylindrical		25x100 M16x1.5	66
With Thread		36x120 M24x1.5	67
		25x112 M16x1.5	70
VDI Design		36x135 M24x1.5	71

Driver Type	Drawing	ØD x L	Driver Code
Central	┥──└──►」 ¥	25x70	72
Clamping Hexagonal		32x70	73
Central		.75x2.75″	76
Clamping Tapered		20x70	77
		1.00x2.75"	80
		1.00x3.94"	81
Frontal		1.25x2.75″	82
Clamping Surface 2°		1.25x3.94″	83
Sundce 2	•	1.50x2.75″	84
		1.50x3.94″	85
Trapezoidal	╅╎ ┥ ──┌──╼┤ [╸]	28x126 Tr 28x2	88
Thread	Tr <mark>† 1987 – 1997 – 1</mark> 0	36x162 Tr 36x2	89
Spraymist	╼╴└╶ ⋗ ╷ <u>┥</u> ┍╶┯╺┍╴┫╴	25x50	91
Driver		35x60	92

TRI-DEEP Solution for BTA and DTS Drilling Methods

ISCAR TRI-DEEP includes drilling heads with indexable inserts for deep drilling using the Single and Double Tube System.

TRI-DEEP for Single Tube System

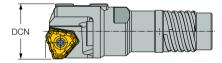
DSD...FT is a description of drilling heads belonging to the **ISCAR TRI-DEEP** family for deep drilling using single tube system. DSD... FT drilling heads are capable of drilling holes from 16 mm to 40 mm in diameter and are available with an external 4 start or internal single start thread connection. The DSD... FT drilling heads are suitable for mounting TOGT inserts that feature 3 chip splitting cutting edges.

TRI-DEEP for Double Tube System

DDD-EF...FT is a description of drilling heads belonging to the **ISCAR TRI-DEEP** family for deep drilling using double tube system. DDD-EF... FT drilling heads are capable of drilling holes from18.4 mm to 28 mm in diameter and are available with an external 4 start thread connection. The DDD-EF... FT drilling heads are suitable for mounting TOGT inserts that feature 3 chip splitting cutting edges.

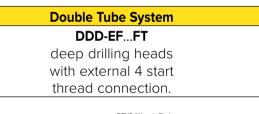
Explanation of Drilling Heads DSD...FT and DDD-EF...FT Description

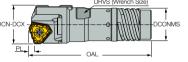
Example:


1 Designation of the Drilling Head

- DSD drilling head for deep drilling using single tube system
- DDD drilling head for deep drilling using double tube system

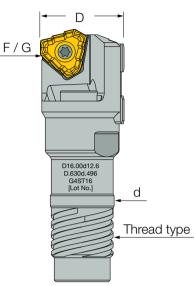
2 Connection Type


- EF external 4 start thread connection
- **IF** internal single start thread connection


3 Cutting Diameter (DC)

Basic Dimensions of Drilling Heads DSD...FT

Single Tul	be System
DSD-EFFT	DSD-IFFT
Deep drilling heads	Deep drilling heads
with external 4 start	with internal single start
thread connection.	thread connection.



- **DC** cutting diameter
- LF functional length
- OAL overall length
- PL point length
- DCONMS connection diameter machine side
- TH thread designation

Universal Marking for Drilling Heads DSD...FT

- **D** cutting diameter
- Metric according to the example: D16.00
- Inch according to the example: D.630
- D pilot diameter
- Metric according to the example: d12.6
- Inch according to the example: d.496

Number of Inserts

- F 3-5 inserts
- G 1 insert

According to the example: G

Type of Connection

- **4ST** external 4 start thread connection
- 1ST internal single start thread connection

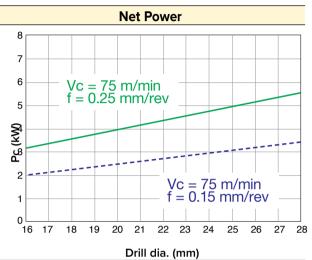
According to the example: 4ST

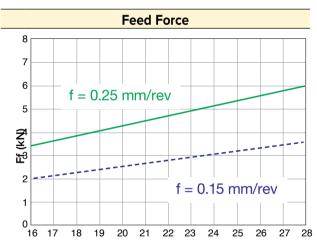
Tube Dimeter

According to the example: 16 6.12.3.2

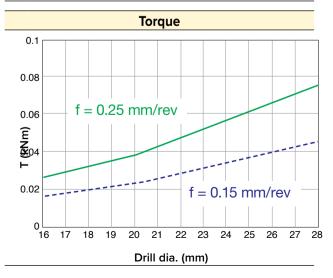
TRI-DEEP Cutting Conditions for BTA and DTS Drilling Methods

The main elements of the cutting conditions for deep drilling are cutting speed and feed. When drilling holes, it is important to select the right cutting conditions in which the tool will work normally, i.e., most efficiently, in order to save the tool from premature wear, taking into account maximum productivity. Recommended initial conditions are shown in the table below, according to the chipbreaker' s form and workpiece material.

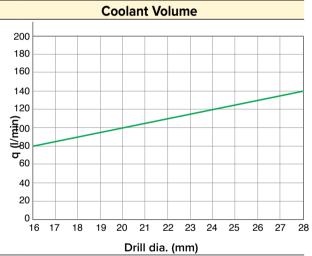

				Tensile Strength	Material Group	Hardness		Cutting speed		(mm/rev) a. (mm)
<u>ISO</u>	Mater	ial	Condition	[N/mm ²]	No. ⁽¹⁾	(HB)	Chipbreaker			Ø18.01-40
-	Mater	<0.25% C		420	1		GF	50-100	0.03-0.10	0.03-0.10
		<0.25% C	annealed	420	1	125	DT	80-140	0.05-0.10	0.05-0.10
	non-alloy steel and cast steel, free cutting steel	≥0.25% C	annealed	650	2	190	GF DT	50-100 80-140	0.03-0.10	0.03-0.10
		<0.55% C	quenched and tempered	850	3	250	GF	50-100	0.03-0.10	0.03-0.12
							DT GF	80-140 50-100	0.05-0.16	0.05-0.20
	cutting steel	≥0.55% C	annealed	750	4	220	DT	80-140	0.05-0.16	0.05-0.20
			quenched and tempered	1000	5	300	GF DT	50-100 80-140	0.03-0.10	0.03-0.12
			annealed	600	6	200	GF	50-100	0.03-0.10	0.03-0.10
			annealeu	000	0	200	DT GF	80-140 50-100	0.05-0.10	0.05-0.10
Ρ	low alloy and o			930	7	275	DT	80-140	0.05-0.10	0.05-0.10
	steel (less thar alloying eleme		quenched and tempered	1000	8	300	GF	50-100	0.03-0.10	0.03-0.10
				42.0.0		050	DT GF	80-140 50-100	0.05-0.10	0.05-0.10
				1200	9	350	DT	80-140	0.05-0.10	0.05-0.10
	high alloyed st	eel cast	annealed	680	10	200	GF DT	50-100 80-120	0.03-0.10	0.03-0.12
	steel and tool		quenched and tempered	1100	11	325	GF	50-100	0.03-0.10	0.03-0.12
							DT GF	80-120 50-100	0.05-0.16	0.05-0.20
	stainless steel		ferritic/martensitic	680	12	200	DT	60-100	0.05-0.00	0.05-0.00
	and cast steel		martensitic	820	13	240	GF	50-100	0.03-0.06	
	stainless steel						DT GF	60-100 50-100	0.05-0.10	0.05-0.10
Μ	and cast steel		austenitic, duplex	600	14	180	DT	60-100	0.05-0.10	0.05-0.10
			ferritic/pearlitic		15	180	GF DT	50-100 80-140	0.03-0.15	0.05-0.18
	gray cast iron ((GG)	no orlitio/mortonoitio		16	260	GF	50-140	0.03-0.25	0.05-0.18
			pearlitic/martensitic		01	260	DT	80-140	0.05-0.25	
		(000)	ferritic		17	160	GF DT	50-100 80-140	0.03-0.15	0.05-0.18
ĸ	nodular cast ir	on (GGG)	pearlitic		18	250	GF	50-100	0.03-0.15	0.05-0.18
			· · ·				DT GF	80-140 50-100	0.03-0.15 0.05-0.25 0.03-0.15	0.05-0.3
	malleable cast	iron	ferritic		19	130	DT	80-140	0.05-0.25	0.05-0.3
		IIOII	pearlitic		20	230	GF DT	50-100 80-140	0.03-0.15	0.05-0.18
			not hardenable		21	60	GF	80-160	0.03-0.15	0.03-0.015
	aluminum-wrou	ught alloys			21		DT GF	100-200 80-160	0.05-0.20	0.05-0.20
			hardenable		22	100	DT	100-200	0.05-0.20	0.05-0.20
			not hardenable		23	75	GF	80-160		0.03-0.015
	aluminum-	≤ 12% Si					DT GF	100-200 80-160		0.05-0.20
Ν	cast alloys		hardenable		24	90	DT	100-200	0.05-0.20	0.05-0.20
		>12% Si	high temperature		25	130	GF DT	80-160 100-200	0.03-0.15	0.03-0.015
		>1% Pb	free cutting		26	110	GF	80-160	0.03-0.15	0.03-0.015
							DT GF	100-200 80-160		0.05-0.20
	copper alloys		brass		27	90	DT	100-200	0.05-0.20	0.05-0.20
			electrolitic copper		28	100	GF	80-160		0.03-0.015
					21	200	DT GF	<u>100-200</u> 50-100		0.05-0.20
		Fe base	annealed		31	200	DT	60-100	0.05-0.10	
	bigh		hardened		32	280	GF DT	50-100 60-100	0.03-0.06	0.03-0.06
	high temperature		annealed		33	250	GF	20-50	0.03-0.06	0.03-0.08
	alloys	Ni / Co					DT GF	20-50 20-50		0.04-0.10
S		base	hardened		34	350	DT	20-50	0.04-0.08	0.04-0.10
			cast		35	320	GF DT	20-50 20-50		0.03-0.08
			pure	400	36		GF	30-60	0.03-0.10	0.03-0.12
	titanium alloys		alpha+beta alloys				DT GF	30-60 30-60	0.05-0.13	0.05-0.15
			hardened	1050	37		DT	30-60	0.05-0.13	
н	hardened	≥ 40HRC	hardened		38		GF	40-100	0.03-0.08	0.03-0.08
	steel		Indiachea Ides 495-524				DT	50-100	0.04-0.08	0.04-0.10



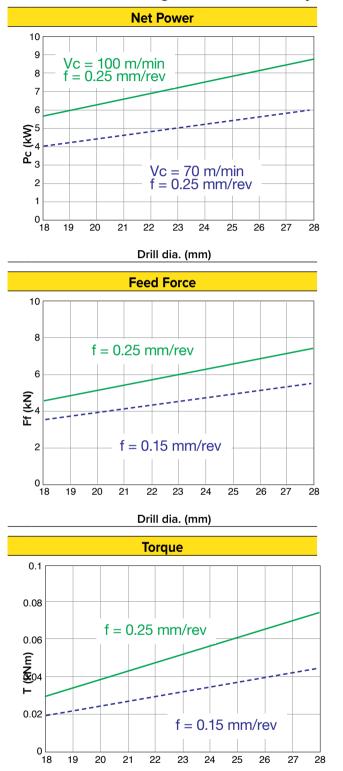
TRI-DEEP Machine Requirements for BTA and DTS Drilling Methods


Machine requirements for deep drilling by BTA or DTS drilling methods using **TRI-DEEP** family tools are shown in the table below.

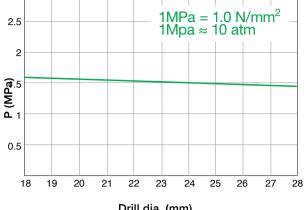
STS - Machine Setting for Single Tube System



Drill dia. (mm)

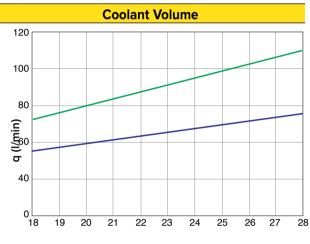


Drill dia. (mm)


The above values should not be used as the exact recommendations.

They may need modification depending on the machining conditions, materials, etc.

Drill dia. (mm)


DTS - Machine Setting for Double Tube System

Coolant Pressure

З

Drill dia. (mm)

Drill dia. (mm)

The above values should not be used as the exact recommendations.

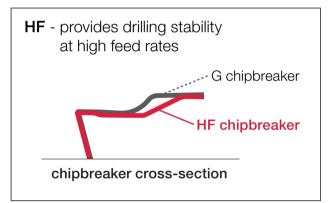
They may need modification depending on the machining conditions, materials, etc.

FINE-BEAM Indexable Inserts

The **ISCAR FINE-BEAM** line provides solutions with indexable inserts for deep drilling methods, such as Single and Double tube system. The **ISCAR FINE-BEAM** line is based on peripheral indexable inserts NPHT with 2 cutting edges as well as internal and central indexable inserts NPMT with 2 cutting edges.

The main features of this indexable solution are cost-effectiveness and functionality.

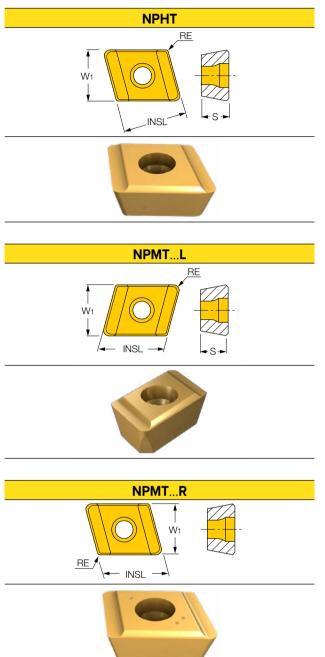
All advantages of indexable solution are known and proven themselves over time


The high precision of the NPHT insert enables deep drilling with a diameter tolerance of IT10.

The NPMT insert exists in two forms: NPMT ...L and NPMT ...R. The NPMT ...L is a central insert designed to penetrate the material. The NPMT ...R is an intermediate insert designed for overlapping between the central and peripheral insert.

All inserts belonging to the **ISCAR FINE-BEAM** line are available with 2 types of chipformers - "G" and "HF". The "HF" chipbreaker helps to stabilize the drilling process while using high feed, especially in difficult to machine materials such as ISO-M (Stainless steel and cast steel), ISO-S (High temp. alloys and Titanium alloys), and ISO-H (Hardened steel) materials. Selection of the GF or DT chipformer depends on the feed rate (mm/rev) according to the cutting conditions in the recommended table.

Chipbreaker Comparison


Note for mounting a drill head:

Please be sure to use a wrench for a drill head to be clamped firmly.

The **FINE-BEAM** line inserts are available in several grade types, such as: IC908, IC520, and IC806. Selection of an insert grade is recommended to perform according to the table below:

		NPHT	
	IC908	IC520	IC806
Р	***	\$	\clubsuit
М	\clubsuit	\$	***
K	***		\$ \$
Ν	***		\$ \$
S	*	\$	***
н	\clubsuit		***

Basic Dimensions of NPHT and NPMT Inserts

- W insert width
- INSL insert length
- RE corner radius
- **S** insert thickness

Explanation of NPHT and NPMT Inserts Description

Example:

NPHT	<mark>06</mark> -	- <mark>03</mark> -	- <mark>04</mark>	R	-	G	-	Ρ	IC908
1	2	3	4	5		6		7	8

1 Insert Type

- **NPHT** peripheral insert (grounded)
- **NPMT** central and intermediate insert (pressed)
- 2 Insert Size (W)
- 3 Insert Thickness (S)
- 4 Corner Radius (RE)

5 Orientation

- L left
- R right

6 Chipbreaker Type

- G general
- HF high feed

7 Insert Position

- P peripheral
- I intermediate
- **C** central

8 Grade

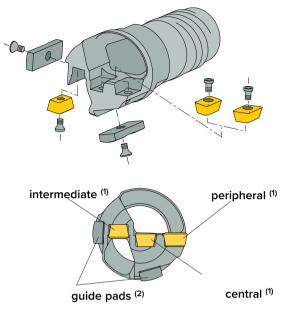
FINE-BEAM Solution for BTA and DTS Drilling Methods

ISCAR FINE-BEAM includes drilling heads with indexable inserts for deep drilling using the Single and Double Tube System.

FINE-BEAM for Single Tube System

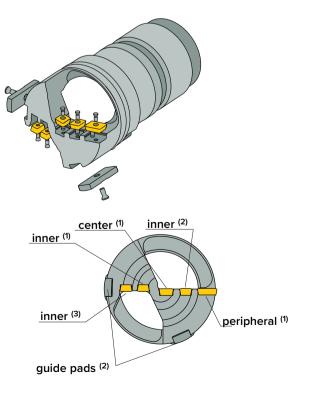
DSD-EF...FB and DSD-IF...FB are descriptions of drilling heads belonging to the **ISCAR FINE-BEAM** family for deep drilling using single tube system. The drilling heads are capable of drilling holes from 25 mm to 89 mm in diameter. The DSD-EF...FB drilling heads are designed with an external 4 start thread connection and the DSD-IF... FB drilling heads are designed with an internal single start thread connection.

FINE-BEAM for Double Tube System

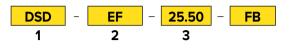

DDD-EF...FB is a description of drilling heads belonging to the **ISCAR FINE-BEAM** family for deep drilling using double tube system. DDD-EF... FB drilling heads are capable of drilling holes from 25 mm to 65 mm in diameter and are available with an external 4 start thread connection.

Design Features of the FINE-BEAM Drilling Head

The design of **FINE-BEAM** drilling head depends directly on the diameter of the drill.


Drill heads up to a diameter of 65 mm carry 3 inserts (1 peripheral insert, 1 central insert, 1 intermediate insert), picture 6.13.2.1.

Picture 6.13.2.1 - Design of FINE-BEAM Drilling Head Up to a Diameter of 65 mm


Drill heads over a diameter of 65 mm carry 5 inserts (1 peripheral insert, 1 central insert, 2 intermediate insert), picture 6.13.2.2.

Picture 6.13.2.2 - Design of FINE-BEAM Drilling Head Over a Diameter of 65 mm

Explanation of FINE-BEAM Drilling Heads Description

Example:

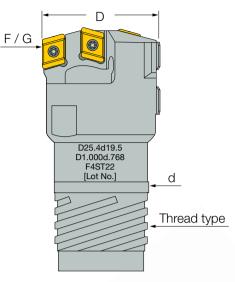
1 Designation of Drilling Head

- **DSD** drilling head for deep drilling using single tube system
- DDD drilling head for deep drilling using double tube system

2 Connection Type

- EF external 4 start thread connection
- IF internal single start thread connection

3 Cutting Diameter (DC)


ſ	
DC	
ł	

Basic Dimensions of Drilling Heads DSD...FT

	Single Tu	ha Sustam
DSD	EFFB	DSD-IFFB
Deep dri with exte	illing heads ernal 4 start connection	Deep drilling heads with internal single start thread connection
	M	
	Double Tu	be System
De	DDD-I ep drilling he	EFFB ads with external d connection
		M.
DC	- cutting d	liameter
OAL	– overall le	ength
PL	– point len	gth
DCONMS		on diameter
	machine	
ТН	– thread d	esignation

281

Universal Marking for FINE-BEAM Drilling Heads

D – cutting diameter

- Metric according to the example: D25.4
- Inch according to the example: D1.000
- D pilot diameter
- Metric according to the example: d19.5
- Inch according to the example: d.768

Number of inserts

- F 3-5 inserts
- **G** 1 insert
- According to the example: F

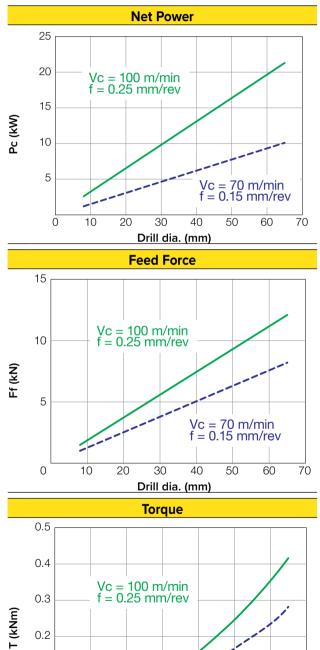
Type of connection

4ST – external 4 start thread connection
1ST – internal single start thread connection
According to the example: 4ST

Tube dimeter According to the example: 22

FINE-BEAM Cutting Conditions for BTA and DTS Drilling Methods

The main elements of the cutting conditions for deep drilling are cutting speed and feed. When drilling holes, it is important to select the right cutting conditions in which the tool will work normally, i.e., most efficiently, in order to save the tool from premature wear, taking into account maximum productivity. Recommended initial conditions are shown in the table below, according to chipbreaker form and workpiece material.


Τ								Feed : f (
			Tensile	Material			Cutting	Drill dia	
2			Strength		Hardness		speed V _c	25.00 -	43.01 -
"	Material	Condition	[N/mm ²]	No. ⁽¹⁾	(HB)	Chipbreaker	(m/min)	43.00	89.00
	<0.25% C	annealed	420	1	125	HF G	<u>70 - 130</u> 70-130	0.11 - 0.41 0.10-0.30	0.14-0.45
			050		40.0	HF	70-130	0.11-0.41	0.12-0.33
	non-alloy ≥0.25% C		650	2	190	G	70-130	0.10-0.30	0.12-0.35
	steel and cast <0.55% C	quenched and	850	3	250	HF	70-130	0.11-0.41	0.14-0.45
	steel, liee	tempered		-	200	G HF	70-130 70-130	0.10-0.30	0.12-0.35
	cutting steel ≥0.55% C	annealed	750	4	220	G	70-130	0.10-0.30	0.14-0.45
		quenched and	1000		200	HF	70-130	0.11-0.41	0.14-0.45
		tempered	1000	5	300	G	70-130	0.10-0.30	0.12-0.35
		annealed	600	6	200	HF	70-120	0.11-0.41	0.20-0.45
						G HF	70-120 55-110	0.10-0.30	0.12-0.35
	low alloy and cast		930	7	275	G	60-120	0.10-0.30	0.12-0.35
	steel (less than 5% of	quenched and	1000	8	300	HF	55-110	0.11-0.41	0.20-0.45
	alloying elements)	tempered	1000	0	500	G	60-120	0.10-0.30	0.12-0.35
			1200	9	350	HF G	55-110 60-120	0.11-0.41	0.20-0.45
ł			-	10		HF	55-110	0.11-0.38	0.20-0.40
	high alloyed steel, cast	annealed	680	10	200	G	70-130	0.10-0.30	0.12-0.35
	steel and tool steel	quenched and	1100	11	325	HF	55-110	0.11-0.38	0.20-0.40
		tempered	1100		020	G	70-130	0.10-0.30	0.12-0.35
	stainless steel	ferritic/martensitic	680	12	200	HF G	40-110 70-130	0.11-0.41 0.10-0.30	0.20-0.45
	and cast steel			10		HF	40-110	0.11-0.41	0.20-0.45
	and cast steel	martensitic	820	13	240	G	70-130	0.10-0.30	0.12-0.35
Λ	stainless steel	austenitic, duplex	600	14	180	HF	40-110	0.11-0.41	0.20-0.45
-	and cast steel		0000		100	G	70-130	0.10-0.30	0.12-0.35
		ferritic/pearlitic		15	180	HF G	50-110	0.11-0.38	0.24-0.41
	gray cast iron (GG)					HF	50-110 50-110		0.12-0.35
		pearlitic/martensitic		16	260	G	50-110	0.10-0.25	0.12-0.35
		ferritic		17	160	HF	50-110	0 0.11-0.38 0 0.10-0.25 0 0.11-0.38 0 0.10-0.25 0 0.11-0.38 0 0.10-0.25 0 0.10-0.25 0 0.10-0.25 0 0.11-0.38 0 0.10-0.25 0 0.11-0.38 0 0.10-0.25 0 0.10-0.25	0.24-0.41
	nodular cast iron (GGG)			17	100	G	50-110		0.12-0.35
	, , , , , , , , , , , , , , , , , , ,	pearlitic		18	250	HF G	50-110 50-110		0.24-0.41
ľ		familia		10	120	HF	50-110		0.24-0.41
	malleable cast iron	ferritic		19	130	G	50-110		0.12-0.35
		pearlitic		20	230	HF	50-110 50-110		0.24-0.41
						G HF	65-150	0.09-0.33	0.12-0.35
	- I	not hardenable		21	60	G	65-130	0.10-0.25	0.12-0.35
	aluminum-wrought alloy:	hardenable		22	100	HF	65-150	0.09-0.33	0.24-0.35
					100	G HF	65-130	0.08-0.23	0.12-0.27
		not hardenable		23	75	G HF	65-150 65-130	0.09-0.33	0.24-0.35
	aluminum- ≤ 12% Si	h a u al a u a la la		24	00	HF	65-150	0.09-0.33	0.24-0.35
1	cast alloys	hardenable		24	90	G	65-130	0.08-0.23	0.12-0.27
1	>12% Si	high temperature		25	130	HF	65-150	0.09-0.33	0.24-0.35
ł						G HF	65-130 65-150	0.08-0.23	0.12-0.27
	>1% Pb	free cutting		26	110	G	65-130	0.08-0.23	0.12-0.27
	copper alloys	brass		27	90	HF	65-150	0.09-0.33	0.24-0.35
	copper alloys	51035		27	50	G	65-130	0.08-0.23	0.12-0.27
		electrolitic copper		28	100	HF G	65-150 65-130	0.09-0.33	0.24-0.35
						HF	20-55	0.09-0.30	0.20-0.33
	Fe base	annealed		31	200	G	20-50	0.08-0.23	0.12-0.27
	re base	hardened		32	280	HF	20-55	0.09-0.30	0.20-0.33
	high				200	G	20-50	0.08-0.23	0.12-0.27
	temperature	annealed		33	250	HF G	20-55 20-50	0.09-0.30	0.20-0.33
	alloys Ni / Co	handar		24	250	HF	20-55	0.09-0.30	0.20-0.33
5	base	hardened		34	350	G	20-50	0.08-0.23	0.12-0.27
		cast		35	320	HF	20-55	0.09-0.30	0.20-0.33
					0_0	G HF	20-50	0.08-0.23	0.12-0.27
		pure	400	36		G	30-60 30-60	0.09-0.30	0.20-0.33
	titanium alloys	alpha+beta alloys	1050	07		HF	30-60	0.09-0.30	0.20-0.33
		hardened	1050	37		G	30-60	0.08-0.23	0.12-0.27
ſ	hardened ≥ 40HRC			38		HF	30-60	0.09-0.30	0.20-0.33
	steel 240HRC	Indicented		30		G	30-60	0.08-0.23	0.12-0.27

(*) For material groups see pages 495-524

FINE-BEAM Machine Requirements for BTA and DTS Drilling Methods

Machine requirements for deep drilling by BTA or DTS drilling methods using TRI-DEEP family tools are shown in the table below.

STS - Setting Guidelines for Cutting Loads, Fluid Pressure and Flow **Rate During STS Operation**

Vc = 70 m/minf = 0.15 mm/rev

60

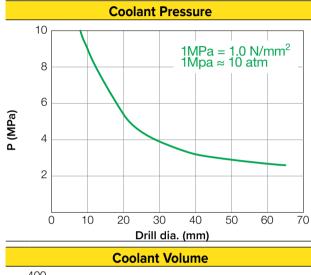
70

50

40

0.2

0.1

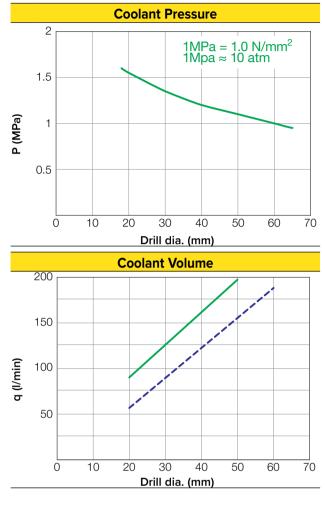

0

10

20

30

Drill dia. (mm)

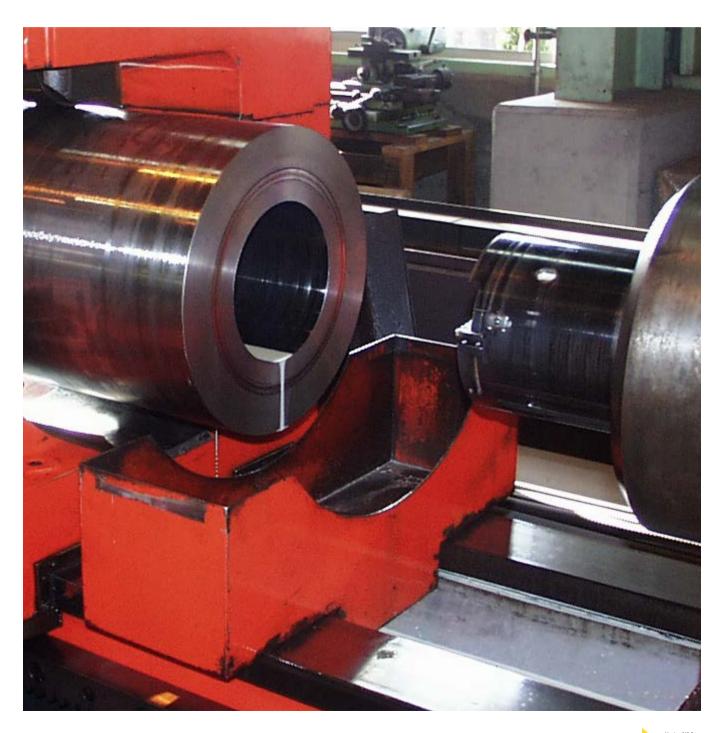


The above values should not be used as the exact recommendations. They may need modification depending on the machining conditions, materials, etc.

Net Power 25 20 $\begin{array}{l} Vc = 100 \text{ m/min} \\ f = 0.25 \text{ mm/rev} \end{array}$ 15 Pc (kW) 10 5 $\begin{array}{l} Vc = 70 \text{ m/min} \\ f = 0.15 \text{ mm/rev} \end{array}$ 0 20 30 40 50 10 60 70 Drill dia. (mm) **Feed Force** 15 Vc = 100 m/min f = 0.25 mm/rev 10 Ff (kN) 5 Vc = 70 m/min f = 0.15 mm/rev 0 10 20 30 40 50 60 70 Drill dia. (mm) Torque 0.5 0.4 Vc = 100 m/min f = 0.25 mm/rev 0.3 T (kNm) 0.2 0.1 $\begin{array}{l} Vc = 70 \text{ m/min} \\ f = 0.15 \text{ mm/rev} \end{array}$ 0 10 20 30 40 50 60 70

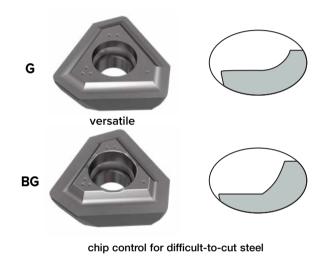
Drill dia. (mm)

DTS - Setting Guidelines for Cutting Loads, Fluid Pressure and Flow Rate During DTS Operation

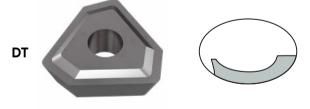


The above values should not be used as the exact recommendations. They may need modification depending on the machining conditions, materials, etc.

ISCAR-DEEP-DRILL Indexable Inserts


ISCAR-DEEP-DRILL family contains a line of tools with cartridges equipped with indexable inserts that provide solutions for deep drilling methods, such as: single and double tube system. The inserts that form the basis of this line are NPMX with two cutting edges and TPMX with three cutting edges. The main features of this indexable solution are cost-effectiveness and functionality.

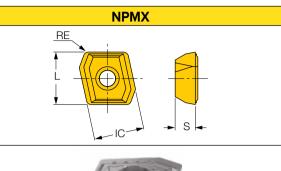
All advantages of the indexable solution are known and have proven themselves over time.



inserts with a variety of chipformer types. The chipformer type "G" is general and suitable for machining most materials. In order to improve performance, in some cases there are additional chipformer types, such as: "B", "BG", and "DT". The "B"-type chipformer has the ability to improve chip control for heat-resistant alloy, titanium, stainless steel, Inconel, etc. The "BG"-type chipformer can improve chip control for difficult-to-cut steel, carbon steel, non-alloy steel, etc. The "DT"type chipformer is designed to reduce machine load and is recommended for use on low power machines. The NPMX inserts are mounted on drilling heads with diameters up to 45 mm and are available with 2 types of chipformers "G" and "B". The TPMX inserts are mounted on drilling heads with a diameter above 48 mm and are available with 4 types of chipformers "G", "B", "BG", and "DT". The tools with diameter ranges between 45 to 48 mm carry NPMX and TPMX inserts.

good chip control for heat-resistant alloy

to reduce machine load

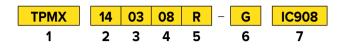

The **ISCAR-DEEP-DRILL** indexable inserts are available in several grade types, such as: IC920, IC5500, IC9025, IC508, IC908, IC520, and IC806.

Recommendation for Insert Grade and Chipformer Type Selections

Selection of an insert grade and chipformer type recommended to perform according to the table below:

				Tensile			Chipbreaker	
ISO				Strength	Hardness		Troubles	shooting
IS	Material		Condition	[N/mm ²]	HB	First Choice	Fracure	Wear
		<0.25% C	annealed	420	125			
		≥0.25% C	annealed	650	190			
	non-alloy steel and cast steel,	<0.55% C	quenched and tempered	850	250	G IC908	BG IC806	B IC9025
	free cutting steel		annealed	750	220	10300	10000	103023
		≥0.55% C	quenched and tempered	1000	300			
			annealed	600	200			
Ρ	low alloy and cast ste	el		930	275	G	BG	В
	(less than 5% of alloying elements)		quenched and	1000	300	IC908	IC806	IC9025
	alloying elements)		tempered	1200	350			
		- 1	annealed	680	200	6		5
	high alloyed steel, ca steel and tool steel	st	quenched and tempered	1100	325	G IC908	BG IC806	B IC9025
			ferritic / martensitic	680	200	G	BG	В
	stainless steel and ca	st steel	martensitic	820	240	IC908	IC806	IC9025
М	stainless steel and ca	st steel	austenitic, duplex	600	180	G IC806	B IC908	B IC9025
	gray cast iron (GG)		ferritic / pearlitic		180			
			pearlitic / martensitic		260			
V	nodular cast iron (GG	\sim	ferritic		160	G	G	В
K	nodular cast from (GG	G)	pearlitic		250	IC908	IC806	IC9025
	malleable cast iron		ferritic		130			
	Indired Die Cast Iron		pearlitic		230			
	aluminum wrought all	0.10	not hardenable		60			
	aluminum-wrought all	Oys	hardenable		100			
		≤12% Si	not hardenable		75			
	aluminum- cast alloys	SIZ /0 SI	hardenable		90			
		>12% Si	high temperature		130	G	G	В
Ν		>1% Pb	free cutting		110	IC908	IC806	IC9025
	copper alloys		brass		90			
			electrolytic copper		100			
	non metallic		duroplastics, fiber plastics					
			hard rubber					
		Fe based	annealed		200			
			hardened		280			
	high temperature alloys		annealed		250			
S	alloys	Ni or Co based	hardened		350	В	В	В
3		buscu	cast		320	IC806	IC908	IC9025
			pure	RM 400				
	titanium alloys		alpha+beta alloys, hardened	RM 1050				
	hardoned steal		hardened					
LL.	hardened steel		hardened			В	В	В
н	chilled cast iron		cast		400	IC806	IC908	IC908
	cast iron		hardened					

Basic Dimensions of NPMX and TPMX Inserts


TPMX

RE

S

Explanation of NPMX and TPMX Inserts Description

Example:

1 Insert Type

NPMX – insert with two cutting edgesTPMX – insert with three cutting edges

- 2 Insert Size (W)
- 3 Insert Thickness (S)
- 4 Corner Radius (RE)

5 Orientation

- R right
- L left

6 Chip Breaker Type

- **G** general
- HF- high feed
- 7 Grade

- RE corner radius
- S insert thickness

IC

L – cutting edge length

ISCAR-DEEP-DRILL Solution for BTA and DTS Drilling Methods with Indexable Inserts

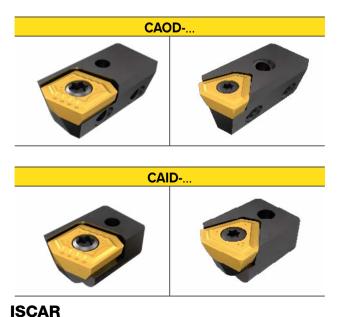
ISCAR-DEEP-DRILL includes drilling heads with cartridges equipped with indexable inserts for deep drilling using the Single and Double Tube System. **ISCAR-DEEP-DRILL** drilling heads with cartridges allow fine adjustment of tool diameter and by exchanging only the peripheral cartridge and guide pads, the original head diameter can be increased up to 5 mm.

ISCAR-DEEP-DRILL Heads with Cartridges Equipped Indexable Insert for Single Tube System

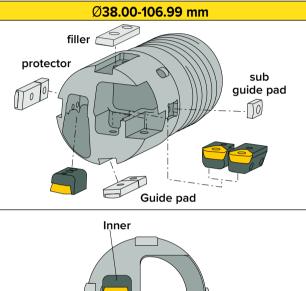
DSD-EC... and DSD-IC... are descriptions of drilling heads with cartridges equipped indexable insert belonging to the **ISCAR-DEEP-DRILL** family for deep drilling using single tube system. The drilling heads are capable of drilling holes from 38 mm to 294 mm in diameter. The DSD-EC... drilling heads are

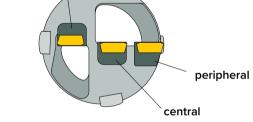
designed with an external 4 start thread connection and the DSD-IC... drilling heads are designed with an internal single start thread connection.

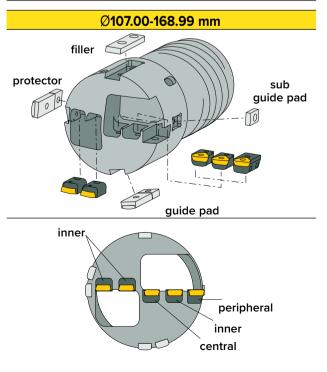
ISCAR-DEEP-DRILL Heads with Cartridges Equipped Indexable Inserts for Double Tube System

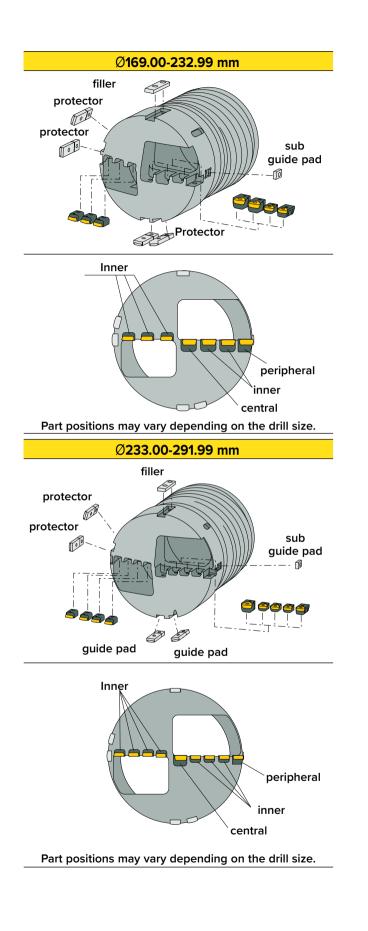

DDD-EC... is a description of drilling heads with cartridges equipped indexable inserts belonging to the **ISCAR-DEEP-DRILL** family for deep drilling using double tube system. DDD-EC... drilling heads are capable of drilling holes from 38 mm to 184 mm in diameter and are available with an external 4 start thread connection.

ISCAR-DEEP-DRILL Cartridges for Single and Double Tube System


CAOD-... and CAID-... are descriptions of cartridges equipped. The same cartridges can be used in deep drilling heads for single and double tube systems belonging to the ISCAR-DEEP-DRILL family. The CAOD-... is a peripheral cartridge that carry peripheral inserts and allow fine adjustment of the drilling head diameter. The CAID-... cartridge is used as an inner or central cartridge and has no adjustments. Cartridges CAOD -... and CAID -... are designed in two versions depending on the diameter of the drilling head. The CAOD-... cartridge that is used in a drilling head up to \emptyset 40 mm carry an NPMX insert with two cutting edges, and a drilling head over \emptyset 40 mm carries a TPMX insert with three cutting edges. The CAID-... cartridge used in a drilling head up to \emptyset 48 mm carries an NPMX insert with two cutting edges, and in drilling head over Ø 48 mm carries a TPMX insert with three cutting edges.


The **ISCAR-DEEP-DRILL** family offers CAOD-...+... cartridges that can increase the diameter of the drilling head up to 5 mm. The CAOD-...+... is a peripheral cartridge that replaces the CAOD-... in case of need to increase the drilling head diameter.


Design Feature of the ISCAR-DEEP-DRILL Drilling Head


The design of the **ISCAR-DEEP-DRILL** drilling head directly depends on the diameter of the drill and is divided into four diameter ranges in accordance with table 6.14.2.1.

Part positions may vary depending on the drill size.

In addition to guide pads, the drilling heads that belong to the **ISCAR-DEEP-DRILL** family are equipped with sub guide pad, filler, and protector.

Sub guide pad - helps prevent breakage while pulling out the tool from hole/ cross-hole processing. These guide pads are made from soft steel to prevent damage to the surface.

Sub Guide Pad

Filler – protects the pocket of the guide pad from damage when drilling. This part does not work directly to drilling and is made with steel.



Protector – prevents damage of the guide pad when retracting the tool after drilling.

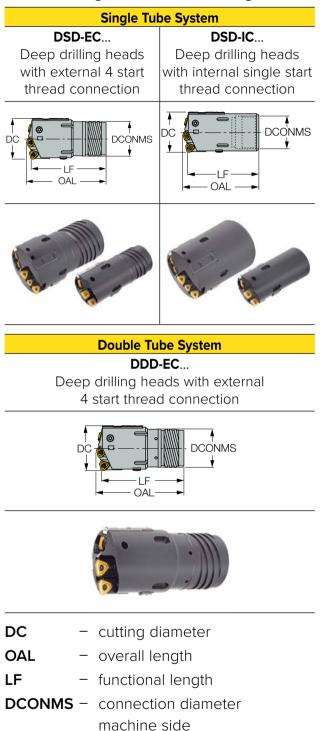
Protector

Explanation of ISCAR-DEEP-DRILL Drilling Heads with Cartridges Description

Example:

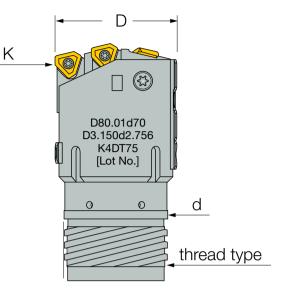
1 Designation of Drilling Head

- DSD drilling head for deep drilling using single tube system
- DDD- drilling head for deep drilling using double tube system


2 Connection Type

- EC external 4 start thread connection
- IC internal single start thread connection

3 Cutting Diameter (DC)



Basic Dimensions of ISCAR-DEEP-DRILL Drilling Heads with Cartridges

TH – thread designation

Universal Marking for ISCAR-DEEP-DRILL Drilling Heads with Cartridges

- **D** cutting diameter
- Metric according to the example: D80.01
- Inch according to the example: D3.150
- D pilot diameter
- Metric according to the example: d70
- **Inch** according to the example: d2.756

Tool Style

K – cartridge style drill head

Type of Connection

- **4ST** external 4 start thread connection for single tube system
- **1ST** internal single start thread connection for single tube system
- **4DT** external 4 start thread connection for double tube system

According to the example: 4DT

Tube Dimeter

According to the example: 75

ISCAR-DEEP-DRILL Solution for BTA and DTS Drilling Methods with Brazed Tips

The **ISCAR-DEEP-DRILL** includes drilling heads with brazed tips for deep drilling using the Single and Double Tube System. **ISCAR-DEEP-DRILL** drilling heads with brazed tips allow drilling holes with IT9 accuracy and surface roughness of 2µm according to Ra parameter. This style of drilling head for deep drilling using the Single Tube System are capable of drilling holes from 8 mm to 65 mm in diameter and are available with an external 1, 2, 4 start thread connection. When using this style of drilling head for deep drilling by Double Tube System, it is then capable of drilling holes from 18.4 mm to 65 mm in diameter and are available with an external 4 start thread connection. **ISCAR-DEEP-DRILL** drilling heads with brazed tips can be used on various types of materials due to the variety of grades combined with different chip breakers.

Brazed Tip Types

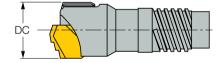
Brazed tips are available in two types, with and without chip splitting. Brazed tips with chip splitting are usually mounted on deep drilling heads up to 20 mm in diameter. The chip splitting cutting edge causes breaking chips into small segments, thus ensuring proper and easy chip evacuation. Brazed tips without chip splitting are usually mounted on deep drilling heads of 12.6 up to 20 mm in diameter. All brazed tips are equipped with a DT chipbreaker to assist form chips during the drilling process.

Brazed Tip without Chip Splitting

Explanation of Drilling Heads with Brazed Tips Description

Example:

DSD	- <mark>E3</mark>	23.55	DT -	PZX2T
1	2	3	4	5

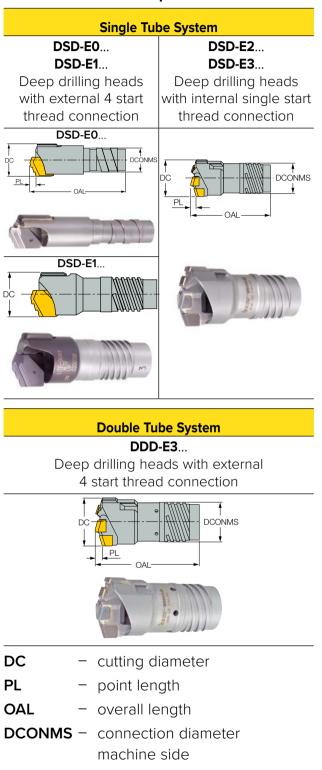

1 Designation of Drilling Head

- **DSD** drilling head for deep drilling using single tube system
- **DDD** drilling head for deep drilling using double tube system

2 Connection Type

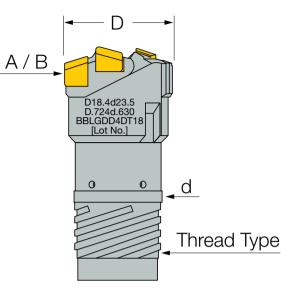
- **EO** external single start thread connection carry single brazed tip
- E1 external 2 or 4 start thread connection carry single brazed tip
- **E2** external 2 start thread connection carry 2 brazed tip
- **E3** external 4 start thread connection carry 3 brazed tip

3 Cutting Diameter (DC)


4 Chipbreaker Type

All brazed tips are equipped with a DT chipbreaker

5 Available Carbide Grades:


PZX2T, P1X2T, P0X2T, PZT, P1T, P0T, PZN, P1N, P0N, KZK, K1K, K0K

Basic Dimensions of Drilling Heads with Brazed Tips

TH – thread designation

Universal Marking for Drilling Heads with Brazed Tips

- D cutting diameter
- Metric according to the example: D18.40
- Inch according to the example: D.724
- D pilot diameter
- Metric according to the example: d23.5
- Inch according to the example: d.630

Tool Style

- A single cutting edge
- B multiple cutting edges

Type of Connection

- **1ST** single start thread connection for single tube system
- 21ST 2 start thread connection for single tube system
- **4ST** 4 start thread connection for single tube system
- **4DT** 4 start thread connection for double tube system

According to the example: 4DT

Tube Dimeter

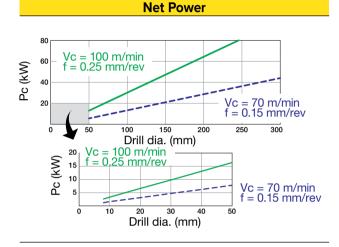
According to the example: 18

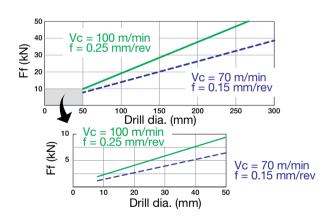
ISCAR-DEEP-DRILL Cutting Conditions for BTA and DTS Drilling Methods

The main elements of cutting conditions for deep drilling are cutting speed and feed. When drilling holes, it is important to select the right cutting conditions in which the tool will work normally, i.e., most efficiently, in order to save the tool from premature wear,

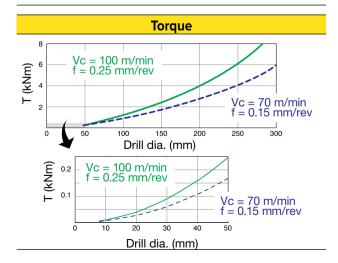
taking into account maximum productivity. Recommended initial conditions are shown in the table below, according to chipbreaker form and workpiece material.

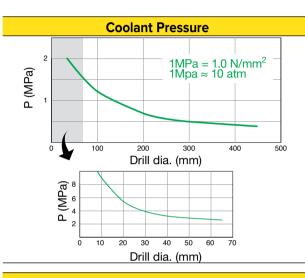
				٩	No. ⁽¹⁾		D			Solid Dril D-E3, DD		D-I1
SO				Tensile Strength [N/mm ²]	Material Group No. ⁽¹⁾	ardnes	Dia. Range Vc	8.00- 20.00	15.60- 20.00	20.01- 31.00	31.01- 43.00	43.01- 65.00
ร	Material		Condition		Σ		(m/min)		1	Rate f (mi	1	
		<0.25% C	annealed	420	1	125		0.05-0.13			0.13-0.2	
		≥0.25% C	annealed	650	2	190		0.05-0.13		0.1-0.17	0.13-0.2	
	and cast steel,	<0.55% C	quenched and tempered	850	3	250			0.08-0.15		0.13-0.2	
1	free cutting steel	≥0.55% C	annealed	750	4	-		0.05-0.13	1	1	0.13-0.2	43.01- 65.00 0.16-0.3 0.16-0.3 0.16-0.3 0.16-0.3 0.15-0.28 0.15-0.25 0.15-0.25 0.15-0.25 0.15-0.25 0.15-0.25 0.15-0.25 0.15-0.25 0.15-0.25 0.15-0.25 0.15-0.25 0.15-0.25 0.15-0.25 0.15-0.25 0.15-0.25 0.16-0.3 0.16-0.3 0.16-0.3 0.16-0.3 0.16-0.3 0.16-
		_0.00%0	quenched and tempered	1000		_	55-100		0.08-0.12	0.1-0.15	1	
	low alloy and cast st	taal	annealed	600	1			0.05-0.13	1	0.1-0.17	0.13-0.2	
	less than 5% of			930	7	275			0.08-0.12	0.1-0.15	1	
	alloying elements)		quenched and tempered	1000			55-100	0.05-0.1	0.08-0.12	0.1-0.15	0.13-0.17	0.15-0.28
Ľ				1200		350	55-100		0.08-0.12	0.1-0.15	0.13-0.17	0.15-0.28
	high alloyed steel, c	ast	annealed	680	10	200			0.08-0.15	0.1-0.17	0.13-0.2	0.16-0.3
4	steel and tool steel		quenched and tempered	1100	11		55-100		0.08-0.12	0.1-0.15	0.13-0.17	0.15-0.28
	stainless steel and c		ferritic / martensitic	680	12			0.05-0.13			0.13-0.3	0.16-0.35
		Last steel	martensitic	820	13	240	60-100	0.05-0.13	0.08-0.15	0.1-0.28	0.13-0.3	0.16-0.35
M s	stainless steel and o	cast steel	austenitic, duplex	600	14	180	60-100	0.05-0.12	0.05-0.12	0.08-0.25	0.1-0.28	0.15-0.33
	arey east iron (CC)		ferritic / pearlitic		15	180	80-100	0.05-0.13	0.08-0.15	0.1-0.17	0.13-0.2	0.16-0.3
9	gray cast iron (GG)		pearlitic / martensitic		16	260	80-100	0.05-0.13	0.08-0.15	0.1-0.17	0.13-0.2	0.16-0.3
	n n dudan anat ina n (C)	\sim	ferritic		17	160	60-100	0.05-0.13	0.06-0.13	0.08-0.18	0.1-0.2	0.15-0.25
ĸ	nodular cast iron (G	GG)	pearlitic		18	250	60-100	0.05-0.13	0.06-0.13	0.08-0.18	0.1-0.2	0.15-0.25
	en alla a la la carat incor		ferritic		19	130	50-100	0.05-0.13	0.06-0.13	0.08-0.18	0.1-0.2	0.15-0.25
	malleable cast iron		pearlitic		20	230	50-100	0.05-0.13	0.06-0.13	0.08-0.18	0.1-0.2	0.15-0.25
			not hardenable		21	60	65-130	0.05-0.13	0.08-0.15	0.1-0.2	0.15-0.25	0.16-0.3
Č	aluminum-wrought a	anoys	hardenable		22	100	65-100	0.05-0.13	0.08-0.15	0.1-0.2	0.15-0.25	0.16-0.3
		400/ 01	not hardenable		23	75	65-130	0.05-0.13	0.08-0.15	0.1-0.2	0.15-0.25	0.16-0.3
	aluminum-	≤12% Si	hardenable		24	90	65-130	0.05-0.13	0.08-0.15	0.1-0.2	0.15-0.25	0.16-0.3
	cast alloys	>12% Si	high temperature		25	130	65-130	0.05-0.13	0.08-0.15	0.1-0.2	0.15-0.25	0.16-0.3
N		>1% Pb	free cutting		26	110		0.05-0.13	1	0.1-0.2	0.15-0.25	
	copper alloys		brass		27	90		0.05-0.13	1	0.1-0.2	0.15-0.25	
		-	electrolytic copper		28	100		0.05-0.13	1	0.1-0.2	0.15-0.25	
Ī			duroplastics, fiber plastics		29							
	non metallic		hard rubber		30							
			annealed		31	200	10-50	0.05-0.12	0.06-0.12	0.08-0.15	0.12-0.18	0.15-0.25
		Fe based	hardened		32	280		0.05-0.12	0.06-0.12	0.08-0.15	0.12-0.18	0.15-0.25
	high temperature		annealed									
S	alloys	Ni or Co	hardened						1	1	1	1
		based	cast				10-50					
F			pure	400	i —	-	30-50	0.05-0.1	1	0.08-0.12	0.1-0.15	
t	titanium alloys		alpha+beta alloys, hardened	1050	1		30-50	0.05-0.1	0.05-0.1	1	0.1-0.15	
			hardened		38		20.00	1.00 0.1	2.00 0.1	1.00 0.12	5	
	hardened steel	-	hardened		39							
H	chilled cast iron		cast			400						
	cast iron		hardened		41	100						
	or material groups see pa	ages 495-524	hardened									Member IMC Grou

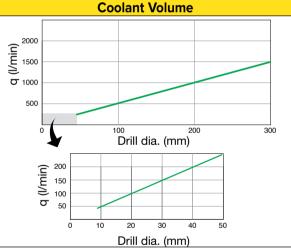

				Ξ.		Chipbreaker Adjustable Solid Drill Heads DSD-EC						, DDD-EC, DSD-IC		
			s Strength ו ²]	al Group No. ⁽¹⁾	Hardness HB	Choice	Troubles	hootina	Dia.	38.00- 39.99	40.00- 51.99	52.00- 63.99	64.00- 84.99	85.00-
			Tensile { [N/mm ²]	Material	<u>q</u>	U t			Vc		0.000			
De l	Material	Condition	N Le	Ya:	- Tar	First	Fracture	Wear	vc (m/min)		Food	Rate f (m	m/rev)	
	<0.25% C	annealed	420	1	125	_	Thecture	Wear		0.08-0.15	0.1-0.2	•	0.15-0.25	018.03
	<u><0.25% C</u> ≥0.25% C	annealed	650	2	120					0.08-0.15	0.1-0.2		0.15-0.25	
st	on-alloy ceel and <0.55% C ast steel,	quenched and	850		250	G	BG	В		0.08-0.15	0.1-0.2		0.15-0.25	0.18-0.3
	ee cutting	tempered annealed	750	4	220	IC908	IC806	IC9025	60-120	0.08-0.15	0.1-0.2	013-0.23	0.15-0.25	018-03
	eeel ≥0.55% C	quenched and tempered	1000		300					0.08-0.15	0.1-0.2		0.15-0.25	0.18-0.3
	w allow and past staal	annealed	600	6	200				60-100	0.08-0.15	0.1-0.2	0.13-0.23	0.15-0.25	9 293.00 25 0.18-0.3 25 0.18-0.3 25 0.18-0.3 25 0.18-0.3 25 0.18-0.3 25 0.18-0.3 25 0.18-0.3 25 0.18-0.3 25 0.18-0.3 25 0.18-0.3 25 0.18-0.3 25 0.18-0.3 25 0.18-0.3 25 0.18-0.3 25 0.18-0.3 25 0.18-0.3 25 0.18-0.3 32 0.25-0.4 32 0.25-0.4 32 0.25-0.4 32 0.25-0.4 32 0.25-0.4 32 0.25-0.4 32 0.25-0.4 32 0.25-0.4 32 0.25-0.4 32 0.18-0.3 3 0.18-0.3 3 0.18-0.3 3 0.18-0.3 3
	w alloy and cast steel ess than 5% of	quenched	930	7	275	G	BG	В	60-100	0.08-0.15	0.1-0.2	0.13-0.23	0.15-0.25	0.18-0.3
	lloving elements)	and	1000			IC908	IC806	IC9025		0.08-0.15	0.1-0.2		0.15-0.25	0.18-0.3
		tempered	1200		350				1	0.08-0.15	0.1-0.2		0.15-0.25	0.18-0.3
		annealed	680	10	200				60-120	0.08-0.15	0.1-0.2	0.13-0.23	0.15-0.25	0.18-0.3
	igh alloyed steel, cast eel and tool steel	quenched and tempered	1100	11	325	-	BG IC806	B IC9025	60-120	0.08-0.15	0.1-0.2	0.13-0.23	0.15-0.25	0.18-0.3
st	ainless steel	ferritic /	680	12	200	G	BG	В	60-110	0.08-0.15	0.1-0.2	0.13-0.23	0.15-0.25	0.18-0.3
aı	nd cast steel	martensitic	820				IC806	IC9025	60-110	0.08-0.15	0.1-0.2	012 0 22		010 0 2
ct	ainless steel	martensitic austenitic,		13	240	G	B	В	60-110	0.08-0.15	0.1-0.2	0.13-0.23	0.15-0.25	0.18-0.3
Л	nd cast steel	duplex	600	14	180		IC908	IC9025	60-110	0.08-0.15	0.1-0.2	0.13-0.23	0.15-0.25	0.18-0.3
	ray cast iron (GG)	ferritic / pearlitic		15	180		10500	103023		0.20-0.30	0.20-0.30	0.24-0.32	0.24-0.32	0.25-0.4
		pearlitic /		16	260				80-140	0.20-0.30	0.20-0.30	0.24-0.32	0.24-0.32	0.25 0.18-0.3 0.25 0.18-0.3 0.25 0.18-0.3 0.25 0.18-0.3 0.25 0.18-0.3 0.25 0.18-0.3 0.25 0.18-0.3 0.25 0.18-0.3 0.32 0.25-0.40 0.32 0.25-0.40 0.32 0.25-0.40 0.32 0.25-0.40 0.32 0.25-0.40 0.32 0.25-0.40 0.32 0.25-0.40 0.33 0.18-0.33 0.34 0.18-0.33
noc		martensitic		17	100	50 6 25 IC908 25 IC908 40 IC908 80 G 60 IC806 60 G 60 IC908 60 G 60 G 50 IC908 30 IC908 50 IC908 50 IC908 50 IC908 50 IC908 50 IC908 50 IC908	G	В						
	odular cast iron (GGG)	ferritic		17	1		08 IC806	IC9025						
		pearlitic ferritic				G 0 IC908 0				1				
m	alleable cast iron			19 20						1				
_		pearlitic not		20	230				1				0.24-0.32	0.25-0.4
al	luminum-	hardenable		21	60				100-200	0.08-0.2	0.1-0.25	0.13-0.28	0.15-0.3	0.18-0.3
W	rought alloys	hardenable		22	100				100-200	0.08-0.2	0.1-0.25	0.13-0.28	0.15-0.3	0.18-0.3
a	≤12% Si luminum-	not hardenable		23						0.08-0.2		0.13-0.28		
	ast alloys ———	hardenable		24	90	-			100-200	0.08-0.2	0.1-0.25	0.13-0.28	0.15-0.3	0.18-0.33
1	>12% Si	high temperature		25 26	130 110	G IC908	G IC806	B IC9025		0.08-0.2		0.13-0.28 0.13-0.28		0.18-0.3
C	<u>>1% Pb</u> opper	free cutting brass		20						0.08-0.2		0.13-0.28	0.15-0.3 0.15-0.3	
	lloys	electrolytic												
		copper		28	100				100-200	0.08-0.2	0.1-0.25	0.13-0.28	0.15-0.3	0.18-0.3
n	on metallic	duroplastics, fiber plastics		29						0.08-0.2		0.13-0.28		
		hard rubber		30						0.08-0.2				
	. Fe based	annealed			200									
	igh	hardened			280					1	1			
	emperature Ni or Co	annealed			250									
al	lloys based	hardened			350	1 D	В	В						
-		cast	400		320	IC806	IC908	IC9025		1	1			
tit	anium alloys	pure alpha+beta alloys, hardened	400 1050											
h	ardonod stool	hardened		38							0.08-0.18			
	ardened steel	hardened		39		В	В	В	30-80	0.06-0.13	0.08-0.18	0.13-0.23	0.13-0.23	0.15-0.28
						DIC806								
	hilled cast iron	cast		40	400	IC806	IC908	IC908	30-80	0.06-0.13	0.08-0.18	0.13-0.23	0.13-0.23	0.15-0.2

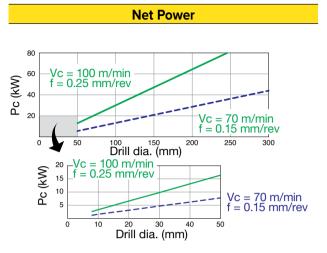

(1) For material groups see pages 495-524 ISCAR

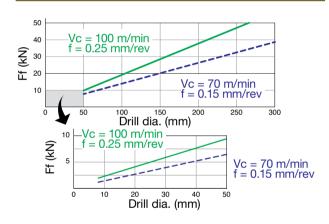
ISCAR-DEEP-DRILL Machine Requirements for BTA and DTS Drilling Methods

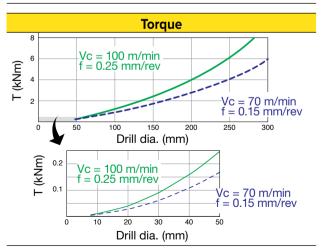

Machine requirements for deep drilling by BTA or DTS drilling methods using **TRI-DEEP** family tools are shown in the table below.

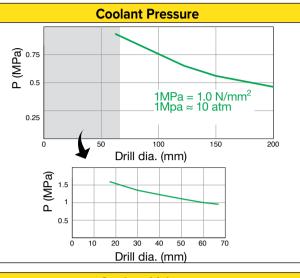

Setting Guidelines for Cutting Loads, Fluid Pressure and Flow Rate During STS Operation

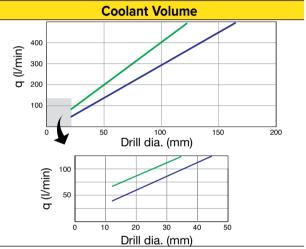



Feed Force

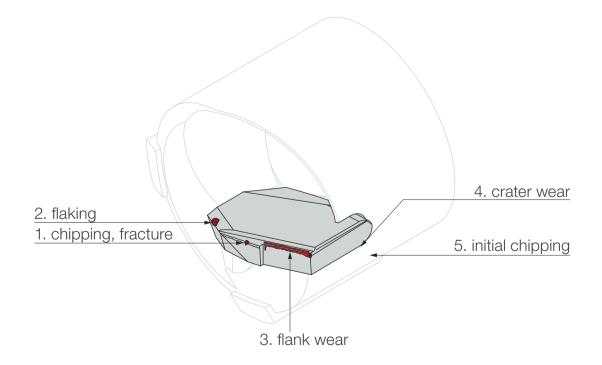





Setting Guidelines for Cutting Loads, Fluid Pressure and Flow Rate During DTS Operation



Feed Force



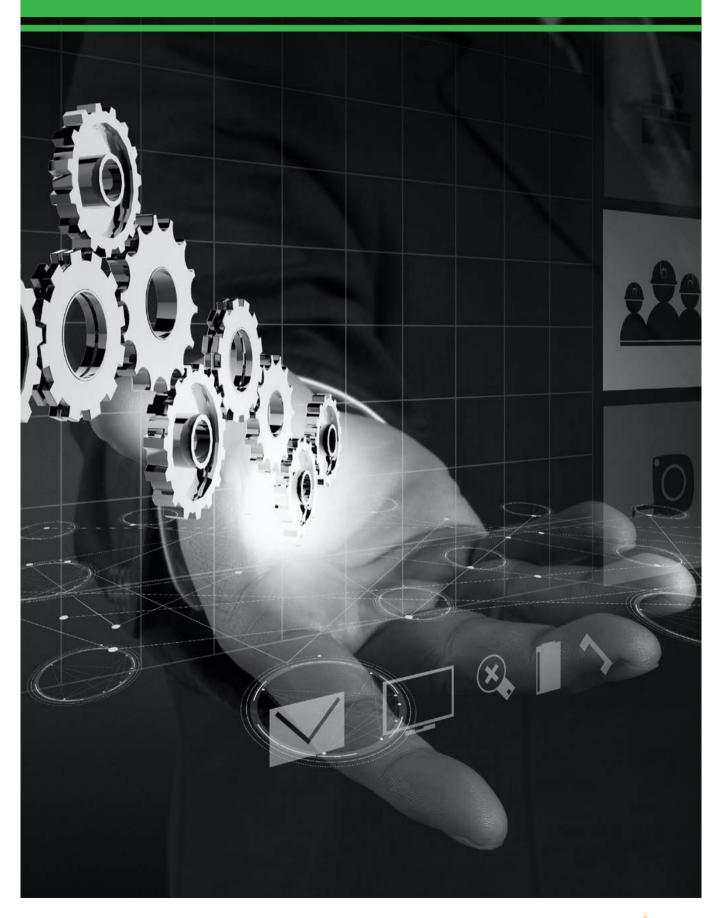
Troubleshooting

Problem	Possible Cause	Solution
The Drill Breaks Or Insert Chips	Chip evacuation problems. Center misalignment of drill to workpiece.	Check that the coolant passages are clear and that the Venturi slots are not damaged. Check center alignment of drill to workpiece. Check workpiece and drill clamping rigidity.
Poor Surface Finish	 Workpiece or drill clamping rigidity problem. Inadequate coolant oil. Cutting speed too low. 	 Improve workpiece or drill clamping. Check the coolant oil and replace if necessary. Increase the cutting speed.
Excessive Leakage of the Coolant	• Chips block the fluid passages. The drill was incorrectly assembled, or the Venturi slots of the internal tube are located in the wrong direction.	Clear the chips. Check all connections and the direction of the internal tube.
Insufficient Coolant Flow At the Cutting Zone, Despite Correct Fluid Supply	 Chips block the fluid passages. Worn bushing or sealing device. Venturi slots are too wide (worn). Internal tube shorter than the external tube. 	 Clear the chips. Check the bushing and seal and replace if necessary . Replace the internal tube. Replace the internal tube to one with a correct length.
Chips Jam in the Front end of the Drill	Insufficient coolant flow.	 Adjust the fluid flow by raising the pressure; check the filter and fluid quality.

		Solution					
Problem	Cause	Grade	Cutting Conditions / Other				
Chipping, Fracture	Excessive vibration or impact.Torn away built-up edge.	 Use a tough grade. 	 Reduce the feed rate. Eliminate the vibration.				
Flaking	 Excessive vibration or impact. 	 Use a tough grade. 	 Reduce the feed rate. Eliminate the vibration.				
Flank Wear	Cutting speed too high.Inadequate tool toughness.	 Use a grade with high wear resistance. Use a coated grade. 	 Reduce the cutting speed. Reduce the feed rate. Use coolant properly. 				
Crater Wear	Cutting speed too high.Feed rate too high.Inadequate tool toughness.	 Use a grade with high wear resistance. Use a coated grade. 	Reduce the cutting speed.Reduce the feed rate.Use coolant properly.				
Initial Chipping	Inappropriate guide bush or pilot hole.Misalignment.	• Use a tough grade.	 Adjust or change the guide bushing or pilot hole. Reduce the feed rate. Correct the misalignment. 				

Special Request Form Deep Drilling

Requested Information Form for Deep Hole Drill Design


Company name				Telephon	e no		
Address				Date _			
Contact person				Custome	r no		
Workpiece							
Product name:		No. of			Hole diameter	:	
Hole depth:					Tolerance (of h	nole):	
Surface finish (Rz, Ra):		Deviation (r	mm/100):		Straightness (n	nm/100):	
Material							
Material (DIN, AISI, JIS):							
Hardness (HB, HS, HRC)	:						
Condition:	Quenche	d	□ Tempered		Cast	Annealed	
	Other _						
Machine							
Machine supplier name:							
Machine type/model:	🗌 NC lathe		□ Machining ce	nter	Other		
Rigidity:	Good		□ Normal		Poor		
Spindle power (kW):							
Tool and/or workpiece rot	ation (TR/WR):						
\square Tool and workpiece	🗌 Rota	ating workpi	ece (WR)		□ Rotating too	ol (TR)	
Type of Coolant							
Water based:	Soluble				Emulsion		%
Oil based:	🗌 Coolant P	Pressure (bar	r):		Coolant Volum	ne (L/min):	
Tool Drill Head							
Drill diameter:			_ (mm/inch)				
Thread:	Inner		Outer		Brazed		
Indexable:	🗌 Adjustable	e	Direct mount		Coating:	Coated	□ Uncoated
Solid drilling					Counterbor	ing	
Pre-drilled hole size:			_ (mm/inch)				
Bottom finishing:	🗌 Full ball R	!	🗌 Flat bottom R		Corner R	Other .	
Trepanning:	□ Y	□ N					
Tube outer diameter:			_ (mm/inch)	Core size	diameter:		(mm/inch)
Diagona fill in and rations to	LIGHT ICCAD		-				

Requested Information Form for Deep Hole Drill Design (Continued)

Tube																
Outside diameter:						_ (mm/incl	h)	Total L	ength:						 (mm/iı	nch)
Internal Thread: _ External Thread:	4	□ Sta	arts		2	□ Starts			1	□ S	tarts					
Tube Thread:	1	🗌 En	ıd			🗌 Both e	ends									
Inner Tube Length:						_ (mm/incl	h)									
Inner Tube Slit:	1	🗌 En	ıd			🗌 Both e	ends									
Drilling System & Bo	oring (Conditio	ons													
Single Tube Syste	m:					🗌 Blind I	Hole	Drilling			ouble	Tub	e Sys	tem		
Cross Hole Drilling	g:					C Throu	gh H	ole Dril	ling							
Please Sketch Your	Drillin	g Appli	ication													
General Production Quantity of parts per																
Grade, tool life, etc.: Perfomance expectat Cutting data: Description of prese	tion: \	/ _c =		m/min	N	=	RPM		F=		_ mm/n				_ mm,	/rev

Please fill in and return to your **ISCAR** representative.

Formulas and Definitions

General Formulas and Definitions for Drilling Operations

Knowledge to calculate cutting speed and feed is of decisive importance for successful drilling. This section describes general formulas and definitions for drilling operations, in particular for calculating cutting speed, feed per revolution and specific cutting force.

Cutting Speed (v_c)

Cutting speed is the speed at which the cutting edge of the drill moves relative to the material being drilled. It is usually measured in meters per minute (m/min) or feet per minute (ft/min).

Formula:

$$v_c = \frac{\pi \times D \times n}{1000}$$

When:

- **v**_c = cutting speed (m/min)
- π = Pi (approximately 3.14159)
- **D** = diameter of the drill (mm)
- **n** = rotation velocity of drill (revolutions per minute, RPM)

Rotation Velocity of the Drill (n)

Rotation velocity of the drill or rotational speed of the spindle, measured in revolutions per minute (RPM).

Formula:

$$n = \frac{1000 \times vc}{\pi \times D}$$

When:

- **n** = spindle speed (revolutions per minute, RPM)
- **v**_c = cutting speed (m/min)
- π = Pi (approximately 3.14159)
- **D** = diameter of the drill (mm)

Feed Rate (v_f)

Feed rate or penetration rate is the speed at which the drill advances into the material, measured in millimeters per minute (mm/min) or inches per minute (in/min).

 $v_f = f \times n$

When:

- v_f = feed rate (mm/min)
- **f** = feed per revolution (mm/rev)
- **n** = rotation velocity of the drill (RPM)

Feed per Revolution (fn)

Feed per revolution is the distance the drill advances into the material with each revolution of the spindle. It is typically measured in millimeters per revolution (mm/rev) or inches per revolution (in/rev).

Formula:

$$f_n = \frac{v_f}{n}$$

When:

 f_n = feed per revolution (mm/rev)

- v_f = feed rate (mm/min)
- **n** = rotation velocity of the drill (RPM)

Material Removal Rate (MRR)

Material removal rate is the volume of material removed per unit time, usually measured in cubic centimeter per minute (cm^3/min) or cubic inches per minute (in^3/min).

Formula:

$$MRR = \frac{D \times f_n \times v_c}{4}$$

When:

MRR = material removal rate (cm³/min)

D = diameter of the drill (mm)

f_n = feed per revolution (mm/rev)

 v_n = cutting speed (m/min)

Net Power (Pnet)

Net power is the actual power required to perform the cutting operation, measured in watts (W) or horsepower (hp).

Formula:

$$P_{net} = \frac{F_c \times v_c}{60}$$

When:

P_{net} = net power (W)
F_c = cutting force (N)
v_c = cutting speed (m/min)

Torque (T)

Torque is the rotational force applied by the spindle to the drill bit, measured in Newton-meters (Nm) or pound-feet (lb-ft).

Formula:

$$\mathsf{T} = \frac{\mathsf{F}_{\mathsf{c}} \times \mathsf{D}}{2000}$$

When:

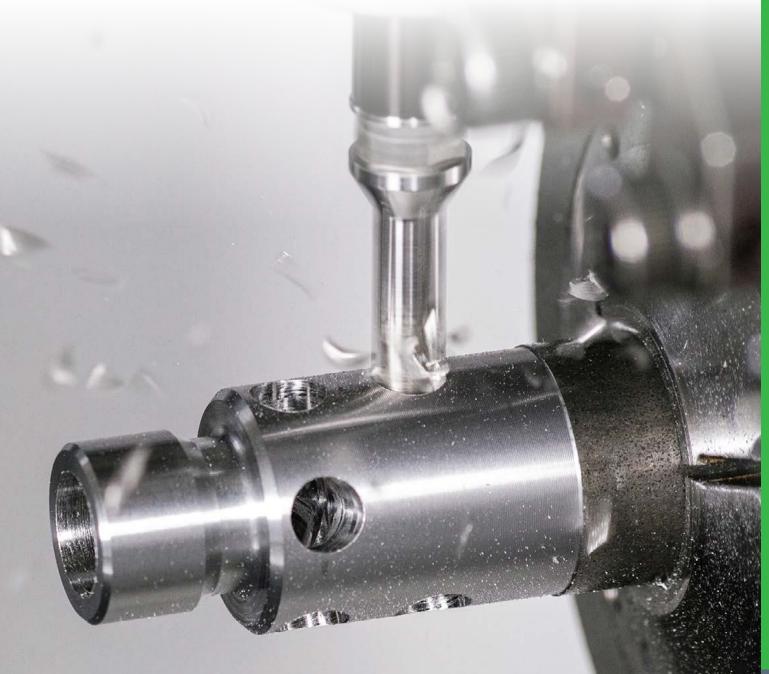
ISCAR

- T = torque (Nm)
- **Fc** = cutting force (N)
- **D** = diameter of the drill (mm)

Specific Cutting Force (k_c)

Specific cutting force is the force required to cut a material, measured per unit area of the material being cut. It is usually expressed in Newtons per square millimeter (N/mm²).

Formula:


$$k_c = \frac{F_c}{A_c}$$

When:

 $\mathbf{k_c}$ = specific cutting force (N/mm²)

Fc = cutting force (N)

Ac = cross-sectional area of the cut (mm²)

Feed Force (F_f)

Feed force is the axial force required to advance the drill bit into the material, measured in Newtons (N).

Formula:

 $F_f = k_f \times A_C$

When:

 F_f = feed force (N) k_f = specific feed force (N/mm²) A_c = cross-sectional area of the cut (mm²)

Machining Time (t_c)

Machining time is the time required to complete the drilling operation, usually measured in minutes.

Formula:

$$t_c = \frac{I}{v_f}$$

When:

- $\mathbf{t_c}$ = machining time (min)
- I = depth of the hole (mm)
- v_f = feed rate (mm/min)

Specific Energy Consumption (SEC)

Electricity consumption is a form of energy consumption in which electrical energy is used. When drilling, the power consumption is the actual energy demand created by the existing power supply for drilling holes.

Specific Energy Consumption (SEC)

Specific Energy Consumption (SEC) is a key metric in drilling operations, representing the amount of energy required to remove a unit volume of material. It is often expressed in Joules per cubic millimeter (J/mm³). Understanding and optimizing SEC can lead to more efficient and cost-effective drilling processes.

The Specific Energy Consumption (SEC) in drilling can be calculated using the following formula:

$$SEC = \frac{3 \times P_{net}}{50 \times MRR}$$

When:

SEC = specific energy consumption $\left(\frac{J}{mm^3}\right)$

P_{net} = net mean power demand (W)

MRR = material removal rate $\left(\frac{\text{cm}^3}{\text{min}}\right)$

Reducing energy consumption aligns with sustainability goals, lowering the carbon footprint of drilling operations.

Factors Affecting SEC

Material Properties: Harder materials generally require more energy to drill, increasing the SEC. Tool Condition: Worn or dull drills can increase SEC as more energy is required to remove material.

Drilling Parameters: Feed rate, spindle speed, and lubrication can all impact the SEC. By regularly measuring and analyzing SEC, drilling operations can be continuously improved, leading to significant savings in energy and operational costs.

Required energy (E_w)

Calculating the required energy (E_w) in a drilling operation is crucial for optimizing energy efficiency, reducing operational costs, and selecting appropriate machinery. This calculation also supports sustainability efforts by reducing energy consumption and environmental impact. The required energy (E_w) in a drilling operation can be calculated using the following formula:

$\textbf{E}_{W} {=} \textbf{P}_{net} \times \textbf{t}_{c}$

When:

 E_W = required energy in a drilling operation (J)

- \mathbf{P}_{net} = net mean power demand (W)
- t_c = machining time (s)

Cutting Material Grades and Engineering Materials

Tool Material Grades

The indexable inserts, exchangeable heads and solid carbide tools for drilling are produced from different tungsten carbide grades.

The grade is defined by a combination of substrate type, coating type and post-coating treatment. If the indexable insert or solid carbide tool is not coated, then the grade will be defined by substrate type only.

ISCAR's products for hole machining are made from cemented carbide. Cemented carbides are very hard materials and therefore they can cut most engineering materials, which are softer. In most cases, to improve performance of thread cutting products when applied to machining a specific class of materials, the indexable inserts and solid carbide tools are coated. One of the most common methods of coating is by physical vapor deposition (PVD). PVD coatings have a wide distribution in indexable thread turning inserts and thread solid carbide tools because they leave the cutting edges sharp. PVD coatings are applied at relatively low temperature (about 500°C).

Nano layered PVD coating

111131

OCHROMAT

PVD coatings were introduced during the late 1980's. With the use of advanced nanotechnology, PVD coatings performed a gigantic step in overcoming complex problems that were impeding progress in the field. Developments in science and technology brought a new class of wear-resistant nano layered coatings. These coatings are a combination of layers having a thickness of up to 50 nm (nanometers) and demonstrate significant increases in the strength of the coating compared to conventional methods.

ISCAR Holemaking Grades Chart

	Grade	ISO	Grade Description	Coating Layers	Coating Color*		
		P25-P40		<u> </u>			
		M30-M40	A tough substrate with PVD coating, suitable for wide range of				
	IC328		applications on steel and stainless steel at low to medium speeds				
	10320		and medium to high feeds. The grade is recommended for				
		S20-S30	interrupted cuts and machining under unstable conditions.	TiCN			
		D 00 D 40		Base			
		P20-P40	A broad-spectrum grade with a tough-submicron fine grain				
		M20-M30 K20-K30	substrate and PVD coating. Designed for machining main types of				
	IC508	N10-N30	engineering materials at various cutting speeds. Features excellent	TiN			
		S10-S25	notch wear and built-up edge resistance. Suitable for interrupted	TiCN			
		H20-H30	cutting and machining under unfavorable conditions.	Base			
		M10-M20					
	IC520		A hard substrate PVD coated grade. Intended mainly for machining				
	10020	N10-N15	austenitic stainless steel, high-temperature alloys and Titanium.	TiN			
		S10-S20		TiCN			
		P10-P20		Base			
		M10-M20					
		K10-K25	A hard submicron fine grain substrate, PVD coated grade followed				
	IC806		by a SUMOTEC surface treatment. Applied mainly to machining	TiAIN			
			heat- resistant superalloys at moderate cutting speeds.	AITIN			
~				Base			
COATED		P15-P30					
A		M20-M30	A tough, submicron fine grain size substrate with excellent chipping				
õ	IC808	K20-K30	resistance, combined with a SUMOTEC PVD coating.				
		S10-S25	Provides high wear resistance. Recommended for a very wide range of materials.	Ti <mark>N</mark> TiAIN			
PVD		H20-H30		Base			
Ъ		P15-P30					
		M20-M30					
	IC808G	K15-K25	A tough, submicron fine grain size substrate with PVD coating. Features high resistance to chipping and abrasive wear. Designed				
	10000		for machining a wide variety of engineering materials.	TiN			
		S10-S25		TiAIN			
		H10-H20		Base			
		P20-P40 M25-M35	A tough substrate with PVD coating and a special SUMOTEC				
		10120-10100	surface treatment. Suitable for machining steel and stainless steel at low to medium cutting speeds and moderate to high feeds.				
	IC830		The grade features high toughness and recommended for	TiN			
		S15-S30	interrupted cuts and machining under unstable conditions. May be	TiAIN			
			used on high temperature alloys at low cutting speeds.	Base			
		P10-P20					
		M15-M25	Ultra-fine grain size, PVD coated. High wear resistance and				
	IC903	K10-K20	toughness. High speed, medium feed. Used for up to 62 HRC				
		010 000	hardened steel, Titanium, nickel-based alloys and stainless steel.				
		S10-S20	-	AITIN Base			
		H10-H20 P10-P20					
		M05-M15	A hard submicron grain size substrate with a PVD coating,				
		K15-K30	suitable for a wide range of materials such as steels, alloy steels,				
	IC907		hard steels, austenitic stainless steel and heat resistant alloys at				
		S10-S20	moderate to relatively high cutting speeds under stable conditions. Features high wear resistance and plastic deformation durability.	TIAIN			
		H05-H15		Base			

	Grade	ISO	Grade Description	Coating Layers	Coating Color*
	Graue	P15-P30			
	IC908	M20-M30 K20-K30 S10-S25 H20-H30	A tough submicron grain size substrate with PVD coating, recommended for general use in a large variety of operations and materials such as steels, alloy steels, austenitic stainless steel and high temperature alloys at moderate cutting speeds. Features high wear resistance and chipping durability.	TiAIN Base	
0	IC920	K10-K20 N10-N25	A PVD coated carbide grade that features good fracture toughness and high wear resistance. Used mostly for machining nodular cast iron at medium cutting speed.	TIAIN Base	
PVD COATED	IC928	P20-P40 M25-M35 S15-S30	A tough substrate with PVD coating, suitable for machining steel and stainless steel at low to medium cutting speeds and moderate to high feeds. The grade is recommended for interrupted cuts and machining under unstable conditions.	TiAIN Base	
	IC950	P15-P35 K15-K35	A PVD coated grade with excellent wear resistance. Generally used for heavy machining alloy steel and cast iron.	TIAIN Base	
	IC1008	P10-P20 M05-M15 K15-K30 S10-S20 H05-H15	A tough submicron grain size substrate with coating. Recommended for general use on a wide range of applications and materials such as steels, alloy steels, austenitic stainless steel and high temperature alloys at moderate cutting speeds.	TiN TiAIN Base	
	IC5500	P20-P35	A tough substrate with SUMOTEC CVD coating. Recommended for high speed drilling of steel. Provides excellent tool life.	TIN Al ₂ O ₃ TICN Base	
OATED	IC8080	P10-P20 K10-K20	A submicron grain size substrate with SUMOTEC MTCVD coating. Features excellent chipping and wear resistance. Recommended for high speed drilling of cast iron and steel, to be used for the peripheral insert on DR drills.	TIN Al ₂ O ₃ TICN Base	
CVD COATED	IC9025	P20-P30 M15-M30	A tough substrate with a cobalt enriched layer combined with a multi-layer CVD coating. Recommended for general use machining of steel in a wide range of conditions, featuring high toughness and wear resistance.	TiN Al ₂ O ₃ TiCN Base	
	IC9080	P10-P20 K10-K20	A submicron grain size substrate with a CVD coating. Features excellent chipping and wear resistance. Recommended for high speed drilling of cast iron and steel, to be used for the peripheral insert on DR drills.	TiN Al ₂ O ₃ TiCN Base	

319

Material Groups

Material Groups Based on ISO 513 and VDI 3323 Standards

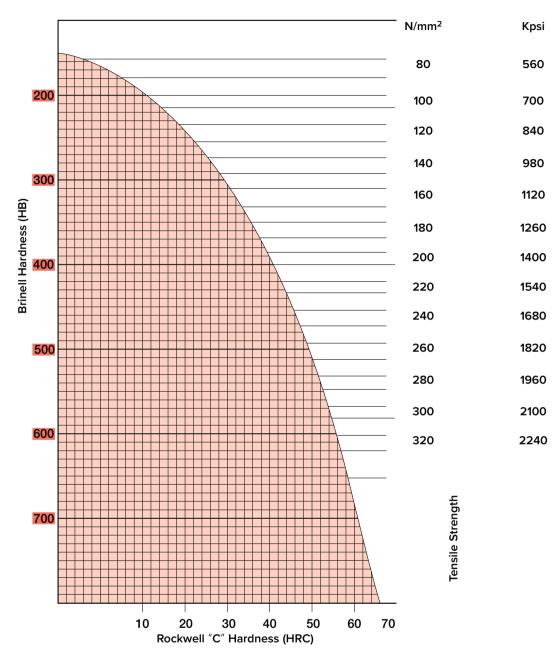
ISO	Material		Condition	Tensile Strength [N/mm ²]	Kc1 ⁽¹⁾ [N/mm ²]	mc ⁽²⁾	Hardness HB	Material Group No.
		<0.25% C	annealed	420	1350	0.21	125	1
	non-alloy steel and cast	≥0.25% C	annealed	650	1525	0.22	190	2
	steel, free cutting steel	<0.55% C	quenched and tempered	850	1675	0.24	250	3
		≥0.55%	annealed	750	1675	0.24	220	4
Р		<u>C</u>	quenched and tempered	1000	1900	0.24	300	5
P			annealed	600	1775	0.24	200	6
	low alloy and cast steel			930	1675	0.24	275 300	7
	(less than 5% of alloying e	lements)	quenched and tempered	1000	1725			8
				1200	1800		350	9
	high alloyed steel, cast ste	el and	annealed	680	2450	0.23	200	10
	tool steel		quenched and tempered	1100	2500	0.23	325	11
	stainless steel and cast ste	eel	ferritic / martensitic	680	1875	0.21	200	12
			martensitic	820	1875	0.21	240	13
M	stainless steel and cast ste	eel	austenitic, duplex	600	2150	0.20	180	14
	gray cast iron (GG)		ferritic / pearlitic		1150	0.20	180	15
	3 • 7 • • • • (• • • 7		pearlitic / martensitic		1350	0.28	260	16
Κ	nodular cast iron (GGG)		ferritic		1225	0.25	160	17
			pearlitic		1350	0.28	250	18
	malleable cast iron		ferritic		1225	0.25	130	19
			pearlitic		1420	0.3	230	20
	aluminum-wrought alloys		not hardenable		700 800	0.25 0.25	60	21 22
	,		hardenable				100	
		≤12% Si	not hardenable		700 700	0.25	75	23 24
	aluminum-cast alloys	>12% Si	hardenable		700	0.28	90 130	24
Ν		>12% Si >1% Pb	high temperature free cutting		750	0.25	130	25
	coppor allova	>170 FU	brass		700	0.27	90	20
	copper alloys		electrolytic copper		700	0.27	100	27
			duroplastics, fiber plastics		200	0.27	70 Shore D	20
	non metallic		hard rubber		200	0.20	55 Shore D	30
			annealed		2600	0.24	200	31
		Fe based	hardened		3100	0.24	280	32
	high temperature alloys		annealed		3300	0.24	250	33
S	right tompolatare anoye	Ni or Co	hardened		3300	0.24	350	34
		based	cast		3300	0.24	320	35
			pure	400	1160	0.24	190	36
	titanium alloys		alpha+beta alloys, hardened	1050	1245	0.24	310	37
			hardened		4600	0.25	55 HRC	38
	hardened steel		hardened		4700	0.25	60 HRC	39
H	chilled cast iron		cast		4600	0.27	400	40
	cast iron		hardened		4500	0.27	55 HRC	41

steel

stainless steel

cast iron

non-ferrous metals


superalloys and titanium

hard materials

(1) Specific cutting force for 1 mm^2 chip section

⁽²⁾ Chip thickness factor

Hardness Conversion Table

321

According to VDI 3323 Standard

Group No.								iši			**** **** ****
al Gr	USA AISI/SAE/	G	ermany	U.K.	France	Sweden	Italy	Spain	Japan	Russia	EURONORM
Material	UNS/	Markataff	DIN	BS		SS	UNI			GOST	EN
1	ASTM/AA 1020; G10200; K02301; K02595; K02596; K02598; K02599; K02599; K02599; K02702; K0300	Uerkstoff	DIN S275JR; St 44-2; Fe 430 B	EN 43 B; Fe 430 B FN; 43/25 HR; 43/25HS; 43/25HS; 43 B; HFW4; HFS4; ERW 3	E 28-2	1411; 1412	Fe 430 B FN; Fe 430 B	UNE AE 275 B; Fe 430 B FN	JIS SN 400 B; SN 400 C; SN 490 B; SN 490 C; SS 400; STK 400; STKM 19 C; STKR 400; 19 C; SS 41; STK 41	St4ps; St4sp	S275JR
1		1.0050	E295; St 50-2; Fe 490-2; ST 50-2 G (E295+CR)	Fe 490-2 FN; 50 B	A 50-2	1550; 2172	Fe 490	A 490-2; Fe 490-2 FN	SS 490; SS 50	St5ps; St5sp	
1	K02404; K02702	1.0045	S355JR; Fe 510 B	50 B; 4360-50 B	E 36-2		Fe 510 B FN	AE 355 B	SN 400 B; SN 400 C; SN 490 B; SN 490 C; SS 490; SS 50		S355JR
1	K02702	1.0143	S275J0; St 44-3 U; Fe 430 C	43C; 4360-43C	E 28-3	1414-01	Fe 430 C FN	AE 275 D			S275J0
1		1.0130	P265S; SPH 265	164-400B LT 20	SPH 265; A 42 AP			SPH 265			P265S
1	A 619	1.0333	DC03G1; USt 3; USt 13	2 CR; 3 CR	E		FeP 02	AP 02	SPCD		DC03G1
1	K02601; K03000; A 573 Gr. 70; A 611 Gr.D	1.0144	S275J2G3 (S275J2); St 44-3 (Fe 430 D 1)	Fe 430 D1 FF; 4360-43 C; 4360-43 D	E 28-3; E 28-4	1411; 1412; 1414	Fe 430 B; Fe 430 C (FN); Fe 430 D (FF)	AE 275 D; Fe 430 D1 FF	SM 400 A; SM 400 B; SM 400 C; STK 400; STKR 400; SM 41 A; SM 41 B; SM 41 C	St4kp; St4ps; St4sp	
1	1008; G10080; A 621	1.0330	DC01; DC 01; St 2; St 12	CR 4; CS 4	C; TC	1142	FeP 01; FeP 00	AP 11; FeP 01; AP 00	SPCC; CR 1		DC01 (FeP 05)
1	1015; G10150; K02401	1.0037	S235JR (Fe 360 B); St 37-2	Fe 360 B; 4360-40 B; ERW 3; CEW 3; 37/23 HR; 37/23 HS; 37/23 CR; 37/23 CS	E 24-2	1311	Fe 360 B; 1449 37/23 HR	AE 235 B; Fe 360 B	STKM 12 A; STKM 12 AC		
1		1.0035	S185 (Fe 310-0); St 33	Fe 310-0; 15 HR; 15 HS; 1449 15 HR; 1449 15 HS	A 33	1300	Fe 320	Fe 310-0; A 310-0	SGP; SS 330; SS 34	St0	S185
1	K02502	1.0034	E195; RSt 34-2	CEW 2; 34/20 HR; 34/20 HS; 34/20 CR; 1449 34/20CS	A 34-2 NE		Fe 330 BFN			St2ps; St2sp	E195
1		1.0334	DD12G1; UStW 23		2 C		FeP 12	AP 12	SPHD	10kp	
1	1006; G10060	1.0335	DD13; StW 24	1 CR; 1 CS; 1 HR; 2 HR; 2 HS; 2 CR; 2 CS	3 C		FeP 13	AP13	SPHE	08kp	DD13

_					_	_	_	_		_	
oup No.								: 1			***
Gree	USA	G	ermany	U.K.	France	Sweden	Italy	Spain	Japan	Russia	EURONORM
Material Group No.	AISI/SAE/ UNS/ ASTM/AA	Werkstoff	DIN	BS	AFNOR	SS	UNI	UNE	JIS	GOST	EN
1	A 620	1.0338	DC04; St 4; St 14	CR 1; CR 2	ES	1147	FeP 04	AP 04; FeP 04	SPCE; HR 4	08JuA	DC04 (FeP 04)
1	K01700; K02001; K02200; K02201; K02203; K02503; K02601; K02801	1.0345	P235GH; HI; H I	141-360; 151-360; 154-360; 161-360; 164-360	A 37 CP	1330; 1331	FeE 235; Fe 360 1 KW; Fe 360 1 KG; Fe 360 2 KW; Fe 360 2 KG	A 37 Grado RA II; A 37 Grado RC I	SGV 410; SGV 450; SGV 480; SPV 235; SPV 450; SPV 490; SGV 42; SGV 42; SGV 42; SGV 49; SPV 24; SPV 24; SPV 46; SPV 50		P235GH
1	1010; G10100	1.0301	C10; C 10	040 A 10; 045 M 10; En 2 A; En 2 A/1; En 2 B; En 32 A; 10 CS	C10RR; XC 10; C 10; AF 34 C 10		1 C 10; C 10	F.151; F.151.A	S 10C	10	C10
1		1.0149	S275JOH; St 44-3 U; RoSt 44-2	43 C; 4360-43C	E 28-3	1412-04	Fe 430 C	Fe 430 C; AE 275 C			S275JOH
1		1.0226	DX51D; St 02 Z	Z2	GC	1151 10	FeP 02 G	FeP 02 G	SGC C		
1	A 1011 (SS Grade 36 (230) Type 2); A1011 (SS Grade 36 (250) Type 1)	1.0114	S235JO; St 37-3 U; Fe 360 C	40 C; 4360-40C	E 24-3		Fe 360 C FN	AE 235 C	SS 330; SS 34		\$235JO
1	A572-60	1.8900	S380N; StE 380	4360 55 E		2145	FeE 390 KG		S 25 C		S380N
1	A 572 Gr. 65	1.0060	E335; St 60-2 (Fe 590-2 B)	En 55 C; Fe 590-2-FN; 55 E; 4360-55 E	A 60-2	1650	Fe 590; Fe 60-2	A 590; Fe 590-2 FN	SM 570; SM 58	St6ps; St6sp	E335
1		1.0028	S250G1T; USt 34-2		A 34-2		Fe 330; Fe 330 B FU		SS 330; SS 34		
1	K01700; K02200; K02801	1.0112	P235S; SPH 235	164-360B LT20; 1501-164- 360B LT20	A 37 AP; SPH 235		Fe 360 C	AE 235 C			P235S
1		1.0722	10SPb20; 10 SPb 20		10 PbF 2		CF 10 SPb 20	10 SPb 20; F.2122			10SPb20
1	1108; 1109; 1111; B1111; B 1111; G11080; G11090	1.0721	10S20; 10 S 20		10 F 2		CF 10 S 20	10 S 20; F. 2121			10\$20
1	12L13; 12L14; 12 L 13; 12 L 14; G12134; G12144	1.0718	11SMnPb30; 9 SMnPb 28	230 M 07 Pb; En 1A Pb	S 250 Pb	1914	CF 9 SMnPb 28	F.210.C; F.210.M; 11 SMnPb 28; F.2112	SUM 22 L; SUM 23 L; SUM 24 L		11SMnPb30
1	1213; 1215; G12130; G12150	1.0715	11SMn30; 9 SMn 28	230 M 07; En 1 A	S 250	1912	CF 9 S 22	F.210.A; F.210.L; 11 SMn 28; F.2111	SUM 22		11SMn30
1	1020; 1023; G10200; G10230	1.1151	C22E; Ck 22	055 M 15; 070 M 20; En 3 A; En 3 C; En 2	XC 25; XC 18; 2 C 22	1450	C 20; C 25	F.1120; C 25 K	S 20 C; S 20 CK; S 22 C	20	C22E

up No.								iši			**** **** ****
Gro	USA	G	ermany	U.K.	France	Sweden	Italy	Spain	Japan	Russia	EURONORM
Material Group No.		Werkstoff	DIN	BS	AFNOR	SS	UNI	UNE	JIS	GOST	EN
1	A 1008 (HSLAS-F Grade 80 [550]); A 1011 (HLAS-F Grade 80 [550])	1.0986	S500MC; QStE 500 TM	60F55 HR; 60F55 HS; 60F55 CS	E 560 D; S 560 MC		FeE 560 TM				S500MC
1	A 1008 (HSLAS-F Grade 70 [480]); A 1008 (HSLAS Grade 70 [480] Class 1)	1.0984	S500MC; QStE 500 TM		E 490 D; S 490 MC	2662	FeE 490 TM				S500MC
1	A 1008 (HSLAS Grade 65 [450] Class 1); A 1008 (HSLAS Grade 65 [450] Class 2)	1.0982	S460MC; QStE 460 TM	1501-50F45; 50F45 HR; 50F45 HS; 50F45 CS							S460MC
1	A 1008 (HSLAS Grade 50 [340] Class 1); A 1008 (HSLAS Grade 50 [340] Class 2)	1.0076	S355MC; QStE 360 TM	46F40 HR; 46F40 HS; 46F40 CS	E 355 D	2642	FeE 355 TM				S355MC
1	A 1008 (HSLAS Grade 50 [340]); A 1008 (HSLAS Grade45 [310] Class 2); A 1011 (HSLAS-F Grade 50 [340])		S315MC; QStE 300 TM	1501-40F30; 43F35 HR; 43F35 HS; 43F35 CS	E 315 D						
1	K01600; K02007; K02700; K02701; K02803; K02900; K03009; K03009; K11803; K12000; K12000; K12001; K12037	1.0562	P355N; Ste 355	225-490A	FeE 355 KG N; E 355 R/FP; A 510 AP	2106	FeE 355; FeE 355 KG; FeE 355 KW	AE 355 KG; AE 355 DD	SM 490 A; SM 490 B; SM 490 C; SM 490 YA; SM 490YB STK 490 YB; STK 490; STK 500; SM 50 A; SM 50 B	15GF	P355N
1	1024; K03011; K03014; K12037; K12709	1.0570	S355J2G3 (S355J2); St 52-3 N (Fe 510 D1)			2132; 2134	fE 510	AE 355 D; Fe 510 D1 FF	SM 490 A; SM 490 B; SM 490 C; SM 490 YA; SM 490 YB; SM 520 B; SM 520 C; STK 490; STK 500; STKM 16 C	17GS; 17G1S	S355J2G3
1	K01600; K02302; K02700; K02701; K02803; K03301; K11803; K12037; K12609; A 299 (A); A 299 (B)	1.0566	P355NL1; TStE 355	225-490 A	A 510 FP	2107	Fe E 355 KT		SLA 365; STK 490; STK 500; SLA 37; STK 50; STK 51		P355NL1

_											
Material Group No.								iši			**** ****
5 S	USA	G	ermany	U.K.	France	Sweden	Italy	Spain	Japan	Russia	EURONORM
Materia	AISI/SAE/ UNS/ ASTM/AA	Werkstoff	DIN	BS	AFNOR	SS	UNI	UNE	JIS	GOST	EN
1	K01600; K02007; K02701; K02803; K117803; K12001; K12037; K12609	1.0565	P355NH; WStE 355	225/490; 225-490 A; 500 Nb	A 510 AP	2106	FeE 355-2; FeE 355 KW				P355NH
1	K12037	1.0549	S355 NLH; TStE 355	50 EE		2135	Fe 510 D	FeE 355 KTM			S355 NLH
1	K12000	1.0553	S355JO; St 52-3 U; Fe 510 C	50 C; 4360-50C	E 36-3		Fe 510 C FN	AE 355 C	SCC 3		S355JO
1	A 252 (1); A 252 (2); A 252 (3)	1.0547	S355JOH; St 52-3 U	50 C; 4360-50C	TSE 355-3; E 36-3		Fe 510 C	AE 355 C; Fe 510 C			S355JOH
1	K02502	1.0036	S235JRG1; S235JR; Fe 360 B; USt 37-2	Fe 360 B FU; Fe 360 B FN		1311; 1312	Fe 360 B; Fe 360 C; Fe 360 D	AE 235 B; Fe 360 B		16D; St3Kp	
1	1020; 1022; 1023; G10200; G10220; G10230	1.0402	C22	055 M 15; 070 M 20; En 3 A; En 3 B; En 3 C; En 2; 22 HS; 22 CS	AF 42 C 20; XC 25; 1 C 22	1450	C 20; C 21	F.112; 1 C 22	S 20 C; S 22 C	20	C22; 2C/2D
1	K01701; K02505; K02704; K02801	1.0425	P265GH; H II	151-400; 154-400; 161-400; 164-400	A 42 CP; A 42 AP	1431; 1430; 1432	Fe 410 1 KW; Fe 410 1 KG; Fe 410 1 KT; Fe 410 2 KW; Fe 410 2 KG	A 42 Grado RC I; A 42 Grado RC I; F.6306; F.6307	SG 295; SGV 410; SGV 450; SGV 480; SPV 315; SG 30; SGV 42; SGV 46; SGV 49; SFV 32; SPV 36	16K; 20K	P265GH
1	A27 65-35	1.0443	HX300PD; H300PD; H 300 PD		E 23-45 M	1305					HX300PD
1	K12000; K12037	1.0546	S355NL; TStE 355	50 EE; 4360-50EE	E 355 FP	2135; 2135-01	FeE 355 KT	AE 355 Grado KT			
1	K12709	1.0545	S355N; Ste 355	50 E; 4360-50E	E 355 R	2134	FeE 355 KG	AE 355 Grado KG	SM 490 A; SM 490 B; SM 490 C; SM 490 YA; SM 490 YB; SM 50 B; SM 50 B; SM 50 C; SM 50 YB;		S355N
1	K02705; K02305; K12709	1.0539	S355NH; StE 335 N	S355NH	S355NH; TSE 355-4	2134-04	Fe 510 B	Fe 355 KGN			S355NH
1	1213; 1215; G12130; G12150	1.0715	11SMn30; 9 SMn 28	230 M 07; 220 M 07	S 250	1912	CF 9 S 22	F.210.A; F.210.L; 11 SMn 28; F.2111	SUM 22		11SMn30
1		1.0722	10SPb20; 10 SPb 20		10 PbF 2		CF 10 SPb 20	10 SPb 20; F.2122			10SPb20

oup No.											*** * * * * * *
S	USA	G	ermany	U.K.	France	Sweden	Italy	Spain	Japan	Russia	EURONORM
Material Group No.	AISI/SAE/ UNS/ ASTM/AA	Werkstoff	DIN	BS	AFNOR	SS	UNI	UNE	JIS	GOST	EN
1	1215; G12150; A 29 (1215); A 108 (1215); A 510 (1215); A 510 (1215); A 519 (1215); A 521 (1215);	1.0736	11SMn37; 9 SMn 36		S 300		CF 9 Mn 36	12 SMn 35; F.2113	SUM 25		11SMn37
1	12L14; 12 L 14; G12144	1.0737	11SMnPb37; 9 SMnPb 36		S 300 Pb	1926	CF 9 SMnPb 36	12 SMnPb 35; F.2114			11SMnPb37
1	1010; G10100	1.1121	C10E; Ck 10	040 A 10; 045 M 10; En 2 A; En 2 A/1; En 2 B; En 32 A	C10RR; XC 10	1265	2 C 10; 2 C 15; 1 C 10; C 10	C 10 k; F.1510	S 09 CK; S 10 C	08; 10	C10E
1	1015; 1017; G10150; G10170	1.1141	C15E; Ck 15	080 A 15; 080 M 15; En 32 C	XC 12; XC 15; XC 18	1370	1 C 15; C 15	C 16 k; F.1511; F.1110; C 15 k	S 15 C; S 15 CK	15	C15E
1	1020; G10200; K02301; K02595; K02596; K02597; K02598; K02599; K02702; K03000	1.0044	S275JR; St 44-2; Fe 430 B	En 43 B; Fe 430 B; 43/25 HR; 43/25 HS; 43/25 HS; 43 B; HFW 4; HFS 4; ERW 3; CEW 4; SAW 4	E 28 A; NFA 35-501 E 28	1411; 1412	Fe 430 B FN	AE 275 B; Fe 430 B FN	SN 400 B; SN 400 C; SN 490 B; SN 490 C; SS 400; STK 400; STK 400; 19 C; SS 41; STK 41	St4ps; St4sp	S275JR
1		1.0250	S320GD; StE 320-3 Z		S 320 GD				SGC 440; SZAC 440; SZAH 440; SGLH 440		S320GD
1		1.0453	P265NL; P 265 NL								P265NL
1		1.0338	DC04; St 4; St 14	CR 1; CS 2	ES	1147	FeP 04	AP 04; FeP 04	SPCE; HR 4	08JuA	DC04
1	K02001; K02601; K02701	1.0116	S235J2G3 (S235J2); St 37-3 N; Fe 360 D 1	Fe 360 D1 FF; 37/23 CR; 37/23 CS; 37/23 HR; 37/23 HS; 40 D; HFW 4; HFS 4	E 24-3; E 24-4; E 24-U	1312; 1313	Fe 360 C; D; Fe 360 C FN; Fe 360 D FF; Fe 37-2		SS 330; SS 34	16D; St3sp	S235J2G3
1	1015; 1017; G10150; G10170	1.0401	C15; C 15	080 A 15; 080 M 15; En32 C; 17 CS; 17 HS	C18RR; XC 18; C 18; AF 37 C 12	1350	1 C 15; C15; C16	E.111	S 15 C		C15
1		1.0347	DC03; RRSt; RRSt 13	CR2; CR3; CS3; 1449 3 CR; 1449 2 CR	E	1146	FeP 02; FeP 03	AP 02; AP02; FeP03	SPCD; CR 3	08Ju	DC03
1	K01500; K01702; K02401; K02502; K03000; A570.36	1.0038	S235JR; S235JRG2; RSt 37-2; Fe 360 B	Fe 360 B FU; 37/23 CR; 37/23 CS; 37/23 HR; 37/23 HS; HFW 3; HFS 3; 40 B	E 24-2 NE	1312	Fe 360 B FN	AE 235 B FN; AE 235 B FU; Fe 360 B FN; Fe 360 B FU	SS 330; SS 34	St3ps; St3sp	S235JR

_	-			r _							
on No.											
Gro	USA	G	ermany	U.K.	France	Sweden	Italy	Spain	Japan	Russia	EURONORM
Material Group No.	AISI/SAE/ UNS/ ASTM/AA	Werkstoff	DIN	BS	AFNOR	SS	UNI	UNE	JIS	GOST	EN
1	J03001	1.0446	GE240; GS-45	A 1					230-450; 230-450 W	25L-3	GE240
2	1035; G10350	1.0501	C35G; C 35 G	080 M 30; En 5; 080 M 36	C 35; AF 55; 1 C 35; XC 38	1572; 1550	C 35; 1 C 35	F.113	S 35 C; S 35 CM		C35G
2	1035; G10350	1.1183	C35G; C 35 G; Cf 35	080 A 35	XC 38 TS	1572	C 36; C 38	F.1130; C 35 k	S 35 C; S 35 CM	35	C35G
2	1039; G10390	1.1157	40Mn4; 40 Mn 4		35 M 5					40G	
2	1040; G10400	1.0511	C40; C 40	En 8; 080 M 40	AF 60; C 40; 1 C 40		C 40; 1 C 40	F.114.A			C40
2	1045; 1045 H; 1042; G10450; H10450; G10420	1.1191	C45E; Ck 45	080 H 46; 080 M 46	C45RR; XC 45; XC 48 H-1	1672	C 45	F.1140; F.1142; C 45 k; C48 k	S 45 C; S 45 CM; S 48 C	45	C45E
2	1025; G10250	1.1158	C25E; Ck 25	070 M 26	2 C 25; XC 25		C 25	F.1120; C 25 k	S 25 C; S 28 C	25	C25E
2	1043; 1045; G10430; G10450	1.0503	C45; C 45	080 M 46	C 45; AF 65; C 45; 1 C 45	1650	C 45; 1 C 45	F.114	S 45 C; S 45 CM	45	C45
2	1050; 1055; G10500; G10550	1.1213	C53G; C53E; Cf 53		XC 48 TS		C 53		S 50 C; S 50 CM	50	
2	1140; G11400	1.0726	35\$20; 35 \$ 20	212 M 36	35 MF 4	1957		F.210.G; 35 MnS 6; F.2131			35S20; 8M
2	1139; 1146; G11390; G11460	1.0727	46S20; 45 S 20		45 MF 4						46S20
2	K12000	1.0553	S355J0; St 52-3 U; Fe 510-C	50 C	E 36-3		Fe 510 C FN	AE 355 C	SCC 3		S355J0
2		1.0551	S355JRC								S355JRC
2	K02700; K02803; K03103; K03300; K12437	1.0473	P355GH; 19 Mn 6		A 52 CP	2101; 2102	Fe E 355-2	A 52 RC I, RA II	SGV 410; SGV 450; SGV 480		P355GH
2		1.0416	C18D; GS-38		20-400 M	1306					C18D
2	K12447	1.0577	S355J2; S355J2G4; Fe 510 D2		A 52 FP	2107		A 52 RB II; AE 355 D			
2	1049; 1050; G10490; G10500	1.1206	C50E; Ck 50	080 M 50	XC 50; 2 C 50	1674	C 50			50	C50E
2	1330; 1527; G13300; G15270	1.1170	28Mn6	150 M 19; En 14 A; En 14 B	20 M 5		C 28 Mn		SCMn 1	30G	28Mn6
2	1034; 1035; 1038; G10340; G10350; G10380; C 1034	1.1181	C35E; Ck 35	080 M 30; En 5; 080 M 36	XC35RR; XC32; XC 35; XC 38 H 2; XC 38 H 1; 2 C 35	1572	C 35	F.1130; C 35 k	S 35 C; S 35 CM; S 38 C	35	C35E
2		1.1180	C35R; Cm 35	080 A 35	XC 38 H 1 u; Cm 35		C 35	F.1135; C 35 k-1			C35R

Material Group No.											**** **** ****
5 D	USA	Ge	ermany	U.K.	France	Sweden	Italy	Spain	Japan	Russia	EURONORM
erial	AISI/SAE/										
Mate	UNS/ ASTM/AA	Werkstoff	DIN	BS	AFNOR	SS	UNI	UNE	JIS	GOST	EN
2	1030; G10300	1.1178	C30E; Ck 30	080 M 30; En 5	XC 32		C 30	2 C 30	S 30 C; S 30 CM		C30E
2	1049; 1050; G10490; G10500	1.0540	C50	En 43 A; 080 M 50	C50	1674	C 50	1 C 50	S 50 C		C50
2	1536; G15360	1.1166	34Mn5					TO.B	SMn 433 H; SMn 433 HRCH; SMn 433 RCH; SMn 1 H		
2	1025; G10250	1.0406	C25	070 M 26	1 C 25		C 25; 1 C 25				
2		1.0723	15S22; 15 S 20	210 A 15; 210 M 15		1922		F.210F; F.210.F	SUM 32		
2		1.1730	C45U; C45W; C 45 U; C 45 U					1.210.1			C45U
3	1045; 1049; G10450; G10490	1.1201	C45R; Cm 45	080 M 46	3 C 45; XC 42 H 1; XC 48 H 1 u	1660	C 45	F.1145; F.1147; C 45 k-1; C 48 k-1	S 45 C; S 45 CM	45	C45R
3	1040; G10400	1.1186	C40E; Ck 40	080 M 40; En 8	2 C 40; XC 42 H 1		C 40		S 40 C	40	C40E
3	1074; 1075; G10740; G10750	1.0614	C76D; C 76 D; D 75-2		XC 75		3 CD 75			75	C76D
3	1095; G10950	1.0618	C92D; C 92 D; D 95-2	95 HS; 95 CS	XC 90		3 CD 95				C92D
3	1086; G10860	1.0616	C86D; C 86 D; D 85-2	80 HS; 80 CS	XC 80		C 85; 3 CD 85				C86D
3		1.1165	G28Mn6; GS-30 Mn 5	A 5; A 6				30 Mn 5; AM 30 Mn 5; F.120.D; F.8211; F.8311	SCMn 2	27ChGSNMDTL; 30GSL	G28Mn6
3	K01700; K02001; K02200; K02201; A 516 Gr.70; A 515 Gr. 70; A 414 Gr.F; A 414 Gr.G	1.0481	P295GH; 17Mn4; 17 Mn 4	224-469 B	A 48 CP; A 48 AP	2102	Fe 295	A 47 RC I; RA II	SG 365; SGV 410; SGV 450; SGV 480; SPV 315; SG 37; SGV 42; SGV 46; SGV 46; SGV 49; SPV 32	14G2	P295GH
3	1043; 1045; G10430; G10450	1.0503	C45; C 45	080 M 46	C 45; AF 65; C 45; 1 C 45	1650	C 45; 1 C 45	F.114	S 45 C; S 45 CM		C45
3	1335; 1335 H; 1541; 1541 H; G13350; G15410; H13350; H15410	1.1167	36Mn5; 36 Mn 5	150 M 36	40 M 5; 35 Mn 5	2120		F. 1203-36 Mn 6; F. 8212-36 Mn 5	SMn 438; SMn 438H; SCMn 3	35G2; 35GL	36Mn5
3	1045; 1045 H; 1042; G10450; H10450; G10420	1.1191	C45E; Ck 45	089 H 46; 080 M 46	C45RR; XC 45; XC 48 H 1	1672	C 45	F.1140; F.1142; C 45 k; C 48 k	S 45 C; S 45 CM; S 48 C	45	C45E
3		1.1303	38MnVS6; 38 MnVS 6								38MnVS6

Group No.								i			****
Gre	USA	Ge	ermany	U.K.	France	Sweden	Italy	Spain	Japan	Russia	EURONORM
<u>Material</u>	AISI/SAE/ UNS/ ASTM/AA	Werkstoff	DIN	BS	AFNOR	SS	UNI	UNE	JIS	GOST	EN
4	1055; G10550	1.0535	C55	070 M 55; En 9	C54; 1 C 55; AF 70; C 55	1655	C 55; 1 C 55	F.115	S 55 C; S 55 C-CSP; S 55 CM	55	C55
4	1055; G10550	1.1203	C55E; Ck 55	070 M 55; En 9	C50RR; XC 54; XC 50; 2 C 55; XC 55 H 1	1655	C 55	F.1150; C 55 K	S 55 C; S 55 C-CSP; S 55 CM	55	C55E
4	1060; G10600	1.0601	C60	060 A 62; En 43 D	C60; 1 C 60		C 60; 1 C 60		S 58 C; S 60-C-CSP; S 60 CM; S 65 C-CSP; S 65 CM	60; 60G	C60; 43D
4	1070; G10700	1.1231	C67S; Ck 67	060 A 67; 080 A 67; En 43 E	C68RR; XC 68	1770	C 67		S 70 C-CSP; S 70 CM	65GA; 68GA	C67S
4	1074; 1075; G1078; G10700; G10750; G10780	1.1248	C75S; Ck 75	060 A 78; 80	C75RR; XC 75	1774	C 75		S 75 CM	75A	C75S
4	1095; G10950	1.1274	C100S; Ck 101	95	C100RR; XC 100	1870	C 100		SK 95 -CSP		C100S
4	W112; W1; T72301	1.1563	C125U; C 125 W		Y2 120; C120E3U		C 120 KU	F.5123; C 120	SK 120; SK 120 M; SK 2; SK 2 M; TC 120	U12-1	C125U
4	1086; G10860	1.1269	C80S; Ck 85; C 85 E		C90RR; XC 90		C 85		SK 85-CP	85A	C80S
4	1055; G10550	1.1209	C55R; Cm 55	070 M 55; En 9	3 C 55; XC 55 H 1		C 55	F.1155; C 55 k-1			C55R
4	1074; 1075; G10740; G10750	1.0605	C75	060 A 78	C 75		C 75			75	
4	1070; G10700	1.0603	C67	060 A 67; 080 A 67; En 43 E; 1449 70 HS	C68; XC 65		C 67		S 70 C-CSP; S 70 CM		C67
4		1.1219	C56E2; Cf 54						C56E2; S55C		C56E2
5	1055; G10550	1.1220	C56D2; C 56 D 2		C 56 D 2						C56D2
5		1.1217	C90S; C 90 S	CS95	C90RR; XC 90; XC90; C90E2U				SK 95		C90S
5	1060; 1064; G10600; G10640	1.1221	C60E; Ck 60	060 A 62; 070 M 60; En 43 D	C60RR; XC 60; X 65; 2 C 60	1678	C 60		S 58 C; S 60 C-CSP; S 60 CM; C 65 C-CSP; C 60 CM	60GA	C60E
5	1055; G10550	1.1203	C55E; Ck 55	070 M 55; En 9	C50RR; XC 54; XC 50; XC 55 H 1; 2 C 55	1655	C 55	F.1150; C 55 k	S 55 C; S 55 C-CSP; S 55 CM	55	C55E
6	9260; G92600	1.5028	65Si7; 65 Si 7		60 S 7				50 P 7; SUP 6; SUP 6 M; SUP 7; SWOSM	60S2G	

up No.								iŝi			*** *** ****
l Gro	USA	G	ermany	U.K.	France	Sweden	Italy	Spain	Japan	Russia	EURONORM
Material Group No.	AISI/SAE/ UNS/ ASTM/AA	Werkstoff	DIN	BS	AFNOR	SS	UNI	UNE	JIS	GOST	EN
6	9260 H; H92600; 9260; G92600	1.5027	60Si7	251 A 60; 251 H 60	60 S 7		60 Si 7	F.144.B; F.1441		60S2	
6	9255; G92550	1.5026	56Si7; 56 Si 7; 55Si7; 55 Si 7	251 A 58; En 45 A	55 S 7	2085; 2090	55 Si 7	F.144; F.144.A; 56 Si 7; F.1440		55S2; 60S2	565Si7; 55Si7
6	9255; G22550	1.5025	51Si7; 51 S 7		50S7; 51 Si 7		48 Si 7; 50 Si 7	F.145.B			51Si7
6		1.5024	46Si7		45 S 7; Y 46 S 7; 46 SI 7			F.1451			46Si7
6	G50986; ASTM Grade E50100; ASTM Grade G15116; SAE E50100	1.3501	100Cr2; 100 Cr 2	GCr6; B00040; GCr4	100C2					SchCh4	
6	K21390; K21590; ASTM A 182 F22	1.7380	10СгМо9-10; 10 СгМо 9 10	622; 622-490; 622/515; 622/690	12 CD 9-10; 10 CD 9.10	2218	12 CrMo 9 10	TU.H	SCMQ4E; SCMV 4; SFVA F 22.A; SFVA F 22.B; SFVCM F22B; STBA 24; STFA 24; STFA 24	12Ch8	10CrMo9-10
6	O2; T31502	1.2842	90MnCrV8; 90 MnCrV 8	BO 2; BO2	90 MnV 8; 90 MV 8		90 MnVCr 8 KU	90 MnCrV 8; F.5229			90MnCrV8
6	101002	1.2550	60WCrV7; 60 WCrV 7	BS1; BS1	55 WC 20	2710	55 WCrV 8 KU; 58 WCr 9 KU	60 WCrSiV 8; F.5242			60WCrV7
6		1.2241	51CrMnV4; 51 CrV 4; 50 CrV 4					1.0272			
6	L2; T61202	1.2210	115CrV3; 115 CrV 3		100 C 3		107 CrV 3 KU	F.520.L; F.5125			115CrV3
6		1.2419	105WCr6; 105 WCr 6	105WC 13	105 WCr 5; 105 WC 13	2140	107 WCr 5 KU	F.5233; 105 WCr 5	SKS 2; SKS 2 M; SKS 3; SKS 31	ChW1G; ChWG	105WCr6
6	4820; 5120; 5120H; G48200; G51200; H51200	1.7147	20MnCr5; 20 MnCr 5	150 M 19	20 MC 5	2172	20 MnCr 5; Fe52	F.150.D	SMnC 420 H; SMnC 420 RCH; SMnC 21 H	18ChG	20MnCr5
6	9255; G92550	1.0904	55Si7; 55 Si 7	250A53	55 S 7	2085	55 Si 8	56 Si 7			
6	9254; G92550	1.0904	55Si7; 55 Si 7	250 A 53	55 S 7	2090					
6	9262; G95620	1.0961	HDT 450 F; S340 MGC		60 SC 6		60 SiCr 8	60 SiCr 8; F.1442		60S2; 55S2; 50ChFA	
6	4135; 4137; 4135H; 4137H; G41350; G41370; H41350; H41370	1.7220	34CrMo4; GS34 CrMo 4; G34 CrMo 4	708 A 30	34 CD 4; 34CrMo4RR; 35 CD 4;	2234	34 CrMo 4 KB; 35 CrMo 4	35 CrMo 4 DF; F.125.A; F.125.B; F.1254; F.1250	SCM 435 H; SCM 435 HRCH; SCM 435 M; SCM 435 RCH; SCM 435TK; SCM 435TK; SCM 3 H; STKS 3	35ChM; AS38ChGM	34CrMo4
6		1.5120	38MnSi4; 38 MnSi 4								
6	L3; T61203	1.2067	102Cr6; 102 Cr 6; 100Cr6	BL 3; BL3	100Cr6RR; 100 C 6; 100Cr6; Y 100 C 6		102 Cr 6 KU	F.5230; 100 Cr 6	SUJ 2	Ch	102Cr6
6	L1	1.2108	90CrSi5; 90 CrSi 5			2092	105 WCr 5				90CrSi5

_			-								
Group No.								-			
5	USA	G	ermany	U.K.	France	Sweden	Italy	Spain	Japan	Russia	EURONORM
Material	AISI/SAE/ UNS/ ASTM/AA	Werkstoff	DIN	BS	AFNOR	SS	UNI	UNE	JIS	GOST	EN
	P20;		35CrMo4;					UNE	JIO	0031	
6	T51620	1.2330	35 CrMo 4	708 A 37	34 CD 4	2234	35 CrMo 4				35CrMo4
6	O1; T31501	1.2510	100MnCrW4; 100 MnCrW 4	BO1; BO0; BO 1; BO 0	90MnWCrV5; 90 MWCV 5; 8 MO 8	2140	95 MnWCr 5 KU; 10 WCr 6	F.522.A; F.5220; 95 MnCrW5; 105 WCr 5	SKS 31		100MnCrW4
6	S1; T41901	1.2542	45WCrV7; 45 WCrV 7	BS1; BS1	45 WCrV 8; 45 WCrV 20	2710	45 WCrV 8 KU	F.524; F.5241; 45 WCrSi 8		5ChW25F	45WCrV7
6	L6; T61206	1.2713	55NiCrMoV6; 56NiCrMoV6; 55 NiCrMoV 6; 56 NiCrMoV 6	BH 224; BH 225	55 NCDV 7			F.520.S	SKT 4	5ChNM	55NiCrMoV6
6		1.2721	50NiCr13		55 NCV 6	2550		F.528			
6	E52100; G52986	1.3505	100Cr6; 100 Cr 6	2 S.135; 535 A 99	100Cr6RR; 100 C 6; 100Cr6	2258	100 Cr 6	F.131; 100 Cr 6; F.1310	SUJ 2; SUJ 4	SchCh 15	100Cr6
6	K11820; K12020; K12320; A204 Grade A; A182 Grade F1	1.5415	16Mo3; 15 Mo 3	1503-243 B	15 D 3	2912; 16Mo3	16 Mo 3 KG; 16 Mo 3 KW; 16 Mo 5 KG; 16 Mo 5 KW	F. 2601; 16 Mo 3	STBA 12; STFA 12; STPA 12		
6	4422; G44220; J12522	1.5419	G20Mo5; 20Mo4; GS-22 Mo 4	245; B 1; B1					SCPH 11		G20Mo5
6	A 350-LF 5; K13050; K21703; K22103	1.5622	14Ni6; 14 Ni 6		16 N 6		14 Ni 6 KG; 14 Ni 6 KT	F.2641; 15 Ni 6			14Ni6
6	3415	1.5732	14NiCr10; 14 NiCr 10		14 NC 11		16 NiCr 11	15 NiCr 11	SNC 415; SNC 415 H; SNC 415 M	12ChN3A	14NiCr10
6	3310; 3310 RH; 3312; 3316; 9315; E 3310; E 3316; E9315; G33106	1.5752	15NiCr13; 14NiCr14; 15 NiCr 13; 14NiCr14	655 M 13; 655 H 13; En 36 A	10 NC 12; 12 NC 15; 14 NC 12; 16 NC 12; 16 NCD 13			15 NiCr 11; F.1540	SNC 815 H; SNC 815 HRCH; SNC 815 RCH; SNC 815 RCH; SNC 22 H		15NiCr13
6		1.7262	15CrMo5; 15 CrMo 5		12 CD 4			12 CrMo 4; F.150.J; F155; F.1551	SCM 415 H; SCM 415 HRCH; SCM 415 M; SCM 415 RCH; SCM 415 TK; SCM 21 H		15CrMo5
6		1.6587	17CrNiMo6; 17 CrNiMo 6	820A16	18 NCD 6			14 NiCrMo 13			
6	9310; 9310H; 9310 RH; E 9310 H; G93106; H93100; H93106	1.6657	14NiCrMo13-4; 14 NiCrMo 13 4	832 H 13; 832 M 13; S.157; En 36 C	16 NCD 13		15 NiCrMo 13; 16 NiCrMo 12	14 NiCrMo 13; 14 NiCrMo 13-1; F.1560; F.1569			
6	5015; G50150	1.7015	150r3; 15 Cr 3	523 M 15	12 C 3; 15Cr2RR; 15 C 2				SCr 415; SCr 415 H; SCr 415 HRCH; SCr 415 RCH; SCr 415 RCH; SCr 21 H	15Ch	15Cr3
6	5132; 5132 H; G51320; H51320	1.7033	34Cr4; 34 Cr 4	530 A 32; 530 H 32; 530 M 32	32 C 4		34 Cr 4; 34 Cr KB	35 Cr 4; F.8221	SCr 430; SCr 430 H; SCr 430 HRCH; SCr 430 RCH; SCr 2 H	35Ch	34Cr4

oup No.											**** **** ****
Gre	USA	G	ermany	U.K.	France	Sweden	Italy	Spain	Japan	Russia	EURONORM
Material Group No.	AISI/SAE/ UNS/ ASTM/AA	Werkstoff	DIN	BS	AFNOR	SS	UNI	UNE	JIS	GOST	EN
6	5140; 5140 H; 5140 RH; G51400; H51400	1.7035	41Cr4; 41 Cr 4	530 A 40; 530 M 40; 530 H 40; En 18	42 C 4		41 Cr 4; 41 Cr 4 KB	41 Cr 4 DF; F.1211; F.1202	SCr 440; SCr 440 H	40Ch	41Cr4
6	5140; G51400	1.7045	42Cr4; 42 Cr 4	530 A 40	42 C 4 TS	2245	41 Cr 4	42 Cr 4	SCr 440		
6	5115; 5117; G51150; G51170	1.7131	16MnCr5; 16 MnCr 5	527 M 17; 590 H 17; 590 M 17	16MnCr5RR; 16 MC 5	2173	16 MnCr 5	F.1516		18ChG	16MnCrS5
6		1.7139	16MnCrS5; 16 MnCrS 5		BGH 7139; BOHLER E 411; WW 4221; OPEL QS1916; PROCONS 7139; E411; SES	2127					16MnCrS5
6	5155; 5155 H; 5150; G51550; H51550; G51600	1.7176	55Cr3; 55 Cr 3	525 A 58; 525 A 60; En 48	55 C 3; 55Cr3	2253	55 Cr 3	F.1431	SUP 9; SUP 9 A; SUP 9 M	50ChGA	55Cr3
6	4142; G41420	1.7223	41CrMo4; 41 CrMo 4		MOC 2; V320		41 CrMo 4	42 CrMo 4	SNB 22-1	40ChFA	
6	4140; 4140 H; 4140 RH; 4142 H; 4142 H; 4145; G41400; H41400; H41400; G41420; K1420; K14248; K14047	1.7225; 1.7227	42CrMo4; 42CrMo4V; 42 CrMo 4; 42 CrMo 4 V	708 M 40; 709 M 40; En 19; En 19 A	42 CD 4; 40 CD 4; 42CrMo4RR	2244; 42CrMo4	42 CrMo 4; 38 CrMo 4 KB; 41 CrMo 4	TO.D; TU.L	SCM 440 H; SCM 440 HRCH; SCM 440 M; SCM 440 RCH; SCM 440 TK; SNB 7 Class 2; SCM 4 H; SNB 72-1	40ChFA	42CrMo4
6	4147; 4147 H; 4150; 4150 H; 8650; 8650 H; G41470; G41500; G41500; H41470; H41500; H86500	1.7228	50CrMo4; 50 CrMo 4	708 M 40; 708 A 47		2512	653 M 31		SCM 445 H; SCM 445 HRCH; SCM 445 RCH; SCM 5 H		50CrMo4
6	8620; G86200	1.7321	20MoCr4; 20 MoCr 4			2625				BGH 7321; E320; SIQUAL 7321	20MoCr4
6	K11547; K11562; K11564; K11757; K11789; K12052; ASTM A182 F12	1.7335	13CrMo4-5; 13 CrMo4 4	620; 620-440; 620-470; 620-540; 621	15 CD 4-05	2216	14 CrMo 3; 14CrMo4 5	TU.E; TU.F; F.2631; 14 CrMo 4 5	SCMV 2; SFVA 12; STBA 22; STFA 22; STFA 22; STPA 20; STPA 22	12ChM; 15ChM	13CrMo4-5
6	K21390; K21590; ASTM A182 F22	1.7380	10CrMo9-10; 10 CrMo 9 10; GS-12CrMo9-10; GS-12 CrMo 9 10; G 12 CrMo9-12	622; 622-490; 622/515; 622/690; 1502-622	12 CD 9-10; 10 CD 9.10	2218	12 CrMo 9; 12 CrMo 10	TU.H	SCMQ 4 E; SCMV 4; SFVA F 22 A; SFVA F 22 B; SFVCM F 22 B; STBA 24; STFA 24; STFA 24;	12Ch8	10CrMo9-10

_											
Material Group No.								1			****
Gre	USA	G	ermany	U.K.	France	Sweden	Italy	Spain	Japan	Russia	EURONORM
<u>Material</u>	AISI/SAE/ UNS/ ASTM/AA	Werkstoff	DIN	BS	AFNOR	SS	UNI	UNE	JIS	GOST	EN
			14MoV6-3;	1503-660-	AINON		UNI	13 MoCrV 6	010	0001	
6	574400	1.7715	14 MoV 6 3	440				13 MOCLA P			
6	E71400; K24065; K24728; A355 Class A	1.8509	41CrAIMo7-10; 41CrAIMo7; 41 CrAIMo 7	905 M 39; En 41 B	40 CAD 6.12	2940	41 CrAIMo 7	F.174; 41 CrAIMo 7; F1740	SACM 645; SACM 1	38Ch2MJuA	41B
6		1.6566	17NiCrMo6-4								17NiCrMo6-4
6	P20+S	1.2312	40CrMnMoS8-6		40 CMD 8 S						
6		1.7149	20MnCrS5; 20 MnCrS 5								20MnCrS5
6	P20+Ni	1.2738	40CrMnNiMo8-6-4; 40 CrMnNiMo 8 6 4		40 CMND 8					40Ch2GNM	40CrMnNiMo8-6-4
6		1.2311	40CrMnMo7; 40 CrMnMo 7		40 CMD 8		35 CrMo 8 KU	F.5302			40CrMnMo7
6		1.7238	49CrMo4; 49 CrMo 4								
6	4150; G41500	1.7701	52CrMoV4; 51CrMoV4; 51 CrMoV 4		51 CDV 4; 51CrMoV4		51 CrMoV 4				51CrMoV4
6		1.7337	16CrMo4-4; 16 CrMo 4 4				A 18 CrMo 45 KW		SCM 415 M; SCM 415; STBA 22; SFVA F12		
6		1.7242	16CrMo4; 16 CrMo 4		15 CD 3.5		18 CrMo 4	F.1550; 18 CrMo 4	SCM 418 H; SCM 418 HRCH; SCM 418 RCH; SCM 418 TK		16CrMo4
6	4419; 4419 H; 4520; G44190; H44190; K14190; K11522; K11820; K12020; K12020; K12023; K12320; K12821	1.5423	16Mo5				16 Mo 5 KG; 16 Mo 5 KW	TU.D; F.2602	SB 450 M; SB 480 M; SB 46 M SB 49 M		
6										30ChGSA	
6	HY-80; HY 80; HY80; K31820; MIL-S-21952										
6				605 M 36; En 16; En 16T							
7	4130; 4130 H; 4130 RH; G41300; H41300	1.7218	25CrMo4; 25 CrMo 4; GS-25 CrMo 4; G 25 CrMo 4	708 A 25	25 CD 4	2225	25 CrMo 4; 25 CrMo KB	F.222; F.1256	SCM 420 TK; SCM 430 M; SCM 430 RCH; SCM 430 TK; STKS 1	20ChM; 30ChM	25CrMo4
7		1.8070	21CrMoV5-11; 21 CrMoV 5 11				35 NiCr 9				
7		1.7755	GS-35 CrMoV 10 4; G35 CrMoV 10-4								
7		1.7733	24CrMoV5-5		20 CDV 6		21 CrMoV 5 11				
7	4340; 4340 H; 9850; G43400; G98500; H43400; K23028	1.6565	40NiCrMo6; 40 NiCrMo 6	817 M 40; En 24				F.1275; 40 NiCrMo 7	SNB 24-1; SNB 24-2; SNB 24-3; SNB 24-4; SNB 24-4; SNCM 439 RCH	40Ch2N2MA	40NiCrMo6

Group No.								I			**** **** ****
al Gr	USA	Ge	ermany	U.K.	France	Sweden	Italy	Spain	Japan	Russia	EURONORM
Material	AISI/SAE/ UNS/ ASTM/AA	Werkstoff	DIN	BS	AFNOR	SS	UNI	UNE	JIS	GOST	EN
7	8640; 8640 H; 8740 H; 8742; G86400; G87420; G87420; H86400; H87420; K11640	1.6546	40NiCrMo2-2; 40 NiCrMo 2 2		40 NCD 2; 40 NCD TS		40 NiCrMo 2; 40 NiCrMo 2 KB	40 NiCrMo 2 DF; F.1205; F.1204; TO.E	SNCM 240; SNCM 240 RCH	38ChGNM	
7	8617; 8617 H; 8620; 8620 H; 8620 RH; 8617; G86170; H86170; H86170; H86200; K12147	1.6523	20NiCrMo2-2; 21NiCrMo2; 21 NiCrMo 2	805 H 20; 805 M 20; 806 M 20; En 362	20 NCD 2	2506	20 NiCrMo 2	20 NiCrMo 2; 20 NiCrMo 3-1; F.1522; F.1534	SNCM 220; SNCM 220 H; SNCM 220 H; SNCM 220 M; SNCM 220 M; SNCM 220 RCH; SNCM 21 H	20ChGNM	20NiCrMo2-2
7		1.5755	31NiCr14; 31 NiCr 14	653 M 31	18 NC 13						
7	3135	1.5710	36NiCr6; 36 NiCr 6	640 A 35	35 NC 6				SNC 236		36NiCr6
7	4340; G43400; 4337; G43370	1.6582	34CrNiMo6; 34 CrNiMo 6	816 M 6; 817 M 40	34 CrNiMo 8; 35 NCD 6	2541	35 NiCrMo 6 KB	F.1272		38Ch2N2MA	34CrNiMo6
7		1.8519	31CrMoV9; 31 CrMoV 9							30Ch3MF	31CrMoV9
7	8630	1.6545	30NiCrMo2-2; 30 NiCrMo 2 2		30 NCD 2		30 NiCrMo 2 KB				
7	4340; G43400	1.6580	30CrNiMo8	823 M 30	30 CND 8; 30 NCD 8			30 CrNi Mo 8	SNCM 431		
7	K01907	1.5217	20MnV6; 20 MnV 6 N	55 C; GR 55; Grade 55	20MV6; TS E 455 4; TU E 455 4						20MnV6; S460
7	300M; 4340M; K44220	1.6928	41SiNiCrMoV7-6	S 155							
8		1.8523	40CrMoV13-9; 39CrMoV13-9; 39 CrMoV 13 9	897 M 39			36 CrMoV 12				40CrMoV13-9
8		1.8515	31CrMo12; 31 CrMo 12	722 M 24	30 CD 12	2240	32 CrMo 12	F.1712; F.124.A			31CrMo12; 40B
8		1.8161	58CrV4; 58 CrV 4								
8		1.7361	32CrMo12; 32 CrMo 12	722 M 24	30 CD 12	2240	30 CrMo 12	F.124.A			32CrMo12
8	9840; G98400	1.6511	36CrNiMo4; 36 CrNiMo 4	817 M 37; 816 M 40	40 NCD 3; 35 NCD 5		39 NiCrMo 4; 39 NiCrMo 4 KB	F.128; F.1280; 35 NiCrMo 4	SUP 10	40ChGNM; 40ChN2MA	36CrNiMo4
8	6145; 6150; 6150 H; G61500; H61500	1.8159	51CrV4; 50CrV4; 50 CrV 4	735 A 50; 735 A 51; 735 H 51; 735 H 51; 735 M 50; En 47	50CrV4RR; 50 CV 4; 51 CV 4	2230	50 CrV 4	F.143; F.143.A; 51 CrV 4; F.1430	SUP 10; SUP 10-CSP; SUP 10 M	50ChFA; 50ChGFA	51CrV4
8	3435	1.5736	36NiCr10; 36 NiCr 10		30 NC 11				SNC 631; SNC 631 H; SNC 631 M		
8	A128 Grade A; J91109; J91129; J91139; J91149	1.3401; 1.3403	X120Mn12; X 120 Mn 12; G-X120 Mn 12	BW 10	Z 120 M 12	2183	GX 120 Mn 12	F.240.A; F.240.A1; AM-X 120 Mn 12; F.8251	SCMnH 1; SCMnH 11	110G13L	
8	4142; G41420	1.2332	47CrMo4	708 M 40	42 CD 4	2244	42 CrMo 4	42 CrMo 4	SCM; SCM 440		47CrMo4

_										_	
oup No.								1			****
G	USA	G	ermany	U.K.	France	Sweden	Italy	Spain	Japan	Russia	EURONORM
Material Group No.	AISI/SAE/ UNS/ ASTM/AA	Werkstoff	DIN	BS	AFNOR	SS	UNI	UNE	JIS	GOST	EN
8	4140 H; 4140 RH; 4140 HT		42CrMo4+QT								
8 8											
8		1.8705	21MnCr6-5								
8											
9		1.6659	31NiCrMo13-4	830 M 31		2534		F.270			
9 9		1.5864	35NiCr18								
9											
9 9		1.8715	17MnCr5-3								17MnCr5-3
10	K71340; K81340	1.5662	X8Ni9	1501-509; 1501-510; 502-650; 509-690	9 Ni; Z 8 N 09		X 10 Ni 9; X 12 Ni 09	F.2645; XBNi 09	SL9N520; SL9N590; STBL 690; STPL 690; SL9N53; SL9N60; STBL 70; STPL 70		X8Ni9
10	2515; A2515; 2517; E2517; K41583	1.5680	X12Ni5; 12Ni19;		Z 18 N 5; Z 10 N 05; 5 Ni				SL5N590; SL5N60		X12Ni5
10	D4; T30404; D6; T30406	1.2436	X210CrW12; X 210 CrW 12	BD6	Z 200 CD 12; Z 210 CW 12-01; X210CrW12-1	2312	X 215 CrW 12 1 KU	F.5213; X210 CrW 12	SKD 2		X210CrW12
10	H13; T20813	1.2344	X40CrMoV5-1; X40 CrMoV 5 1	BH 13	X 40 CrMoV 5; Z 40 CDV 5	2242	X 40 CrMoV 5 1 1 KU	F.5318; X 40 CrMoSiV 5	SKD 61	4Ch5MF1S	X40CrMoV5-1
10	A2; T30102	1.2363	X100CrMoV5; X100CrMoV5-1; X 100 CrMoV 5 1	BA 2	X 100 CrMoV 5; Z 100 CDW 5	2260	X 100 CrMoV 5 1 KU	F.536; F.5227; X 100 CrMoV 5	SKD 12		X100CrMoV5
10	H21; T20821	1.2581	X30WCrV9-3; X30WCrV9 3	BH 21	Z 30 WCV 9		X 30 WCrV 9 3 KU	F.5323; X 30 WCrV 9	SKD 5	3Ch2W8F	X30WCrV9-3; X30WCrV9 3
10		1.2601	X165CrMoV12; X 165 CrMoV 12			2310	X165CrMoW 12KU				X165CrMoV12
10		1.2316	X36CrMo17;				TERO				X38CrMo16
10	M2; T11302	1.3343	X38CrMo16 HS6-5-2; HS 6-5-2; S 6-5-2	BM 2; BM2	Z 85 WDCV 06-05-04-02; 6-5-2; HS6-5-2	2722		F.550.A; F.5604	SKH 51	R6M5	HS6-5-2
10	H11; T20811	1.2343	X37CrMoV5-1; X38CrMoV5-1	BH 11	Z 38 CDV 5; X38CrMoV		X 37 CrMoV 5 1 KU	F.520.G; F.5137; X 37 CrMoSiV 5	SKD 6	4Ch5MFS	X37CrMoV5-1
10	H12; T20812	1.2606; 1.2605	X37CrMoW5-1; X 37 CrMoW 5 1; X35CrWMoV5; X 35 CrWMoV 5	BH 12	Z 35 CWDV 5; X35CrWMoV5		X 35 CrMoW 05 KU	F.537	SKD 62	5ChNM	X37CrMoW5-1; X35CrWMoV5
10	D2; T30402	1.2379	X153CrMoV12; X155CrVMo12-1; X155 CrVMo 12 1	BD 2	X 160 CrMoV 12; Z 160 CDV 12	2310	X 155 CrVMo 12 1 KU	F.520.A	SKD 10; SKD 11		X153CrMoV12
10		1.2085	X33CrS16; X 33 CrS 16		Z 35 V CD 17.S						X33CrS16
10		1.2162	21MnCr5; 21 MnCr 5		20 MC 5						21MnCr5
10		1.2767	X45NiCrMo4; 45NiCrMo16; X 45 NiCrMo 4		45 NCD 16		40 NiCrMoV 8 KU				X45NiCrMo4
10		1.2764	X19NiCrMo4; X 19 NiCrMo 4; GX19NiCrMo4								X19NiCrMo4

oup No.								iši			*** **** ****
5 D	USA	G	ermany	U.K.	France	Sweden	Italy	Spain	Japan	Russia	EURONORM
Material Group No.	AISI/SAE/ UNS/ ASTM/AA	Werkstoff	DIN	BS	AFNOR	SS	UNI	UNE	JIS	GOST	EN
10	D3; T30403	1.2080	X210Cr12; X 210 Cr 12	BD 3	X200Cr12; Z 200 C 12		X 205 Cr 12 KU	F.521; F.5212; X 210 Cr 12	SKD 1	Ch12	X210Cr12
10		1.2367	X38CrMoV5-3; X 38 CrMoV 5 3								X38CrMoV5-3
10		1.6957	27NiCrMoV15-6; 26NiCrMoV14-5; 26 NiCrMoV 14 5								
10	501; 502; S50100; S50200; K41545	1.7362	X12CrMo5; X 11 CrMo5; 12CrMo19-5; 12 CrMo 19 5					F.240.B; TU.J	SCMV 6; SFVA F 5 A; SFVA F 5 B; SFVA F 5 C; SFVA 5 D; SNB 5 Class 1; STBA 29; STFA 25; STPA 25		X12CrMo5
11	M33; T11333; M34; T11334	1.3249	HS2-9-2-8; S 2-9-2-8	BM 34				2-9-2-8; F.5611			
11	M41; T11341	1.3246	HS7-4-2-5; S 7-4-2-5		Z 110 WKCDV 07-05-04-04-02			F.5615; HS 7-4-2-5			HS7-4-2-5
11	M42; T11342	1.3247	HS2-10-1-8; S 2-10-1-8	BM 42	Z 110 DKCWV 09-08-04- 02-01; 2-9-1-8; HS2-9-1-8	2716	HS 2-9-1-8	F.5617; HS 2-10-1-8	SKH 59		HS2-10-1-8
11		1.3207	HS10-4-3-10; S 10-4-3-10	BT 42	Z 130 WKCDV 10-10-04- 04-03; 10-4-3-10; HS10-4-3-10		HS 10-4-3-10	F.550.B; F.5553; HS 10-4-3-10	SKH 57	R12F3K10M3-SCh	HS10-4-3-10
11	T15; T12015	1.3202	HS12-1-4-5; S 12-1-4-5	BT 15	HS12-1-4-5		HS 12-1-5-5	F.5563; HS 12-1-5-5		R13F4K5	
11		1.3243	HS6-5-2-5; S 6-5-2-5	BM 35	6-5-2-5; 6-5-2-5 HC; HS6-5-2-5; HS6-5-2-5; Z 85 WDKCV 06-05-05- 04-02; Z 90 WDKCV 06-05-05-04-02	2723	HS 6-5-2-5	F.550.C; F.5613; HS 6-5-2-5	SKH 55	R6M5K5	HS6-5-2-5
11	M7; T11307	1.3348	HS2-9-2; S 2-9-2		Z 100 DCWV 09-04-02-02; 2-9-2; HS2-9-2	2782	HS 2 9 2	F.5607; HS 2-9-2	SKH 58		HS2-9-2
11	T4; T12004	1.3255	HS18-1-2-5; S 18-1-2-5	BT 4	Z 80 WKCV 19-05-04-01; HS 18-1-1-5		HS 18-1-1-5	F.5530; HS 18-1-1-5	SKH 3		HS18-1-2-5
11	T1; T12001	1.3355	HS18-0-1; S 18-0-1	BT 1	18-0-1; HS 18-0-1; Z 80 WCV 18-04-01	2750	HS 18-0-1	F.5520; HS 18-0-1	SKH 2	R18	HS18-0-1
11											
11 11											
11											
11											
<mark>11</mark> 11			X10NiMoCrV6								
12	430 F; S43020	1.4104	X12CrMoS17; X 12 CrMoS 17		Z 13 CF 17	2383	X 10 CrS 17	F.3413	SUS 430 F		X12CrMoS17
12	S31500	1.4417	GX2CrNiMoN25-7-3			2376					GX2CrNiMoN 25-7-3

_				1							
on No.								ł			**** ****
Gro	USA	G	ermany	U.K.	France	Sweden	Italy	Spain	Japan	Russia	EURONORM
Material Group No.	AISI/SAE/ UNS/ ASTM/AA	Werkstoff	DIN	BS	AFNOR	SS	UNI	UNE	JIS	GOST	EN
12		1.4742	X10CrAlSi18; X10CrAl18		Z 12 CAS 18			F.3113; X 10 CrAl 18	SUS 21	15Ch18SJu	X10CrAlSi18
12		1.4724	X10CrAlSi13; X10CrAl13; X 10 CrAl 13				X 10 CrAl 12	F.3152; X 10 CrAl 13		10Ch13SJu	X10CrAlSi13
12	434; S43400	1.4113	X6CrMo17-1; X 6 CrMo 17 1	434 S 17	Z 8 CD 17-01	2325		F.3116	SUS 434		X6CrMo17-1
12	HNV-6; HNV6; S65006	1.4747	X80CrNiSi20; X 80 CrNiSi 20	443 S 65	Z 80 CSN 20-02		X 80 CrSiNi 20	F.320B	SUH 4		
12	446; S44600	1.4762	X10CrAlSi25; X10CrAl24; X 10 CrAl 24		Z 10 CAS 24	2322		F.3154	SUH 446		X10CrAlSi25
12	EV 8; S63008	1.4871	X53CrMnNiN21-9; X 53 CrMnNiN 21 9	349 S 52	Z 52 CMN 21-9 Az		X 53 CrMnNiN 21 9	F.3217	SUH 35, SUH 36	55Ch20G9AN4	X53CrMnNiN21-9
12		1.4001	X7Cr14; X 7 Cr 14; G-X 7 Cr 13		Z 8 C 13 FF				SUS 4105		X7Cr14
12	440 B; S44003	1.4112	X90CrMoV18		X 89 CrMoV 18-1			SUS 440B			X90CrMoV18
12	410 S; 403; S41008; S40300	1.4000	X6Cr13; X 6 Cr 13	403 S 17	Z 8 C 12	2301	X 6 Cr 13	F.3110	SUS 403; SUS 403 FB; SUS 410 S	08Ch13	X6Cr13
12	410; S41000; S41001; CA-15	1.4006	X12Cr13; GX12Cr13; X 12 Cr 13; X 10 Cr 13	410 S 21; ANC 1 grade A; En 56 A	Z 10 C 13; Z 13 C 13	2302	X 12 Cr 13 KG; X 12 Cr 13 KW	F.3401	SUS 410; SUS 410 FB; SUS 410 TB; SUS 410 TKA; SUS 410 TKC; SUS F 410-A; SUS F 410-B; SUS F 410-C	12Ch13; 15Ch13L	X13Cr13
12	405; S40500	1.4002	X6CrAl13; X 6 CrAl 13	405 S 17	Z 8 CA 12		X 6 CrAl 13	F.3111	SUS 405; SUS 405 TB; SUS 405 TP		X6CrAl13
12	416; S41600	1.4005	X12CrS13; X 12 CrS 13	416 S 21; En 56 AM	Z 11 CF 13	2380	X12 CrS 13	F.3411	SUS 416		X12CrS13
12		1.4015	X8Cr17								
12	430; S43000	1.4016	X6Cr17; X 6 Cr 17	430 S 17; 430 S 15; 430 S 18	Z 8 C 17	2320	X 8 Cr 17	F.310.D; F.3113	SUS 430; SUS 430 TB; SUS 430 TKA; SUS 430 TKC; SUS 430 TP	12Ch17	X6Cr17
12		1.4027	GX20Cr14	ANC 1 grade B; ANC 1 grade C; 420 C 24; 420 C 29					SCS 2	20Ch13L	
12	420 F; S42020	1.4028	X30Cr13; X 30 Cr 13	420 S 37; 420 S 45; En 56 C; En 56 D	Z 33 C 13 Cl; Z 33 C 13; Z 30 C 13	2304	X 30 Cr 13	F.3403	SUS 420 F; SUS 420 J 2; SUS 420 J 2-CSP; SUS 420 J 2 FB; SUS 420 J 2 TKA	30Ch13	X30Cr13
12		1.4086	GX120Cr29; G-X 120 Cr 29	452 C 11							
12		1.4340	GX40CrNi27-4; G-X 40 CrNi 27 4								
12		1.4720	X20CrMo13; X 20 CrMo 13								
12	439; 430 Ti; S43035; S43036;	1.4510	X3CrTi17; X 6 CrTi 17		Z 4 CT 17		X 6 CrTi 17	F.3115; X 5 CrTi 17	SUS 430 LX; SUS 430 LXTB; SUS XM8TB	08Ch17T	X3CrTi17
	XM 8	4 47 40	V400 100		7.40.0.05						1400 100
12	446-1	1.4749	X18CrN28		Z 12 C 25						X18CrN28

up No.								iñi			*** *** ****
l Gro	USA	G	ermany	U.K.	France	Sweden	Italy	Spain	Japan	Russia	EURONORM
Material Group No.	AISI/SAE/ UNS/ ASTM/AA	Werkstoff	DIN	BS	AFNOR	SS	UNI	UNE	JIS	GOST	EN
12		1.4511	X3CrNb17; X 6 CrNb 17		Z 4 CNb 17		X 6 CrNb 17	F.3122; X 5 CrNb 17	SUS 430 LX; SUS 430 LXTB		X3CrNb17
12	409; S40900	1.4512	X2CrTi12; X 6 CrTi 12	LW 19; 409 S 19	Z 3 CT 12		X 6 CrTi 12	F.3121	SUH 409 L; SUS 409 LTB; SUS 409 TB		X2CrTi12
12		1.4418	X4CrNiMo16-5-1; X 4 CrNiMo 16 5		Z 6 CND 16-04-01	2387					X4CrNiMo16-5-1
12	420; S42000	1.4021	X20Cr13; X 20 Cr 13	420 S 37; 420 S 29; En 56 C	Z 20 C 13 Cl; Z 20 C 13	2303	X 20 Cr 13	F.310.J; F.3402	SUS 420 J 1; SUS 420 J 1 FB; SUS 420 J 1 TKA	20Ch13	X20Cr13
13	420; S42000; S42080	1.4031	X39Cr13; X 38 Cr 13		Z 40 C 14 Cl; Z 40 C 14	2304	X 40 Cr 14	F.3404; X40 Cr 13	SUS 420 J 2	40Ch13	X39Cr13
13		1.4922	X20CrMoV11-1; X20CrMoV12-1; X 20 CrMoV 12 1	BS 762		2317	X 20 CrMoNi 12 01				X20CrMoV11-1; X20CrMoV12-1
13		1.4923	X22CrMoV12-1; X21CrMoNiV12-1; X 22 CrMoV 12 1								X22CrMoV12-1; X21CrMoNiV12-1
13	420; S42000	1.4021	X20Cr13; X 20 Cr 13	420 S 37; 420 S 29; En 56 C	Z 20 C 13 Cl; Z 20 C 13	2303	X 20 Cr 13	F.310.J; F.3402; X 20 Cr 13	SUS 420 J 1; SUS 420 J 1 FB; SUS 420 J 1 TKA	20Ch13	X20Cr13
13	420; S42000	1.4034	X46Cr13; X 46 Cr 13		Z 44 C 14 Cl; Z 44 C 14; Z 38 C 13 M		X 40 Cr 14	F.3405; X 40 Cr 13		40Ch13	X46Cr13
13	431; S43100	1.4057	X17CrNi16-2; X 20 CrNi 17 2; X 22 CrNi 17	431 S 29; En 57	Z 15 CN 16.02 Cl; Z 15 CN 16-02	2321	X16 CrNi 16	F.313; F.3427; X 19 CrNi 17 2	SUS 431; SUS 431 FB	14Ch17N2; 20Ch17N2	X17CrNi16-2
13	CA 6-NM; S41500; J91540	1.4313	X3CrNiMo13-4; X 4 CrNi 13 4		Z 6 CN 13-04; Z 6 CN 13-4; Z 4 CND 13.4 M	2384					X3CrNiMo13-4
13		1.4122	X39CrMo17-1; X 35 CrMo 17				X 39 CrMo 17-1				X39CrMo17-1
13	422; \$42200	1.4935	X20CrMoWV12-1; X 20 CrMoWV 12 1								X20CrMoWV12-1
13	HNV 3; S65007	1.4718	X45CrSi9-3; X 45 CrS 9 3; G-X 45 CrNi 9 3	401 S 45; En 52	Z 45 CS 9		X 45 CrSi 8	F.322; F.3220	SUH 1	40Ch9S2; 4Ch9S2	X45CrSi9-3
13		1.2083; 1.2083 ESR	X40Cr14; X 42 Cr 13		X40Cr14; Z 40 C 14	2314	X 41 Cr 13 KU	F.5263; X 40 Cr 13	SUS 420 J 2		X40Cr14
13	CA 6-NM; J91540	1.4317	GX4CrNi13-4; G-X 5 CrNi 13 4	425 C 11; 425 C 12	Z 4 CND 13 4 M		GX 6 CrNi 13 04		SCS 6; SCS 6X		GX4CrNi13-4
13	S13800; XM-13	1.4534	X3CrNiMoAl 13-8-2; X 3 CrNiMoAl 13 8 2	FE-PM1503							X3CrNiMoAl 13-8-2
14	15-5PH; 15-5 PH; XM-12; S15500; J92110	1.4545; 1.4545.9	X5CrNiCuNb15-5		Z 7 CNU 15-05						X5CrNiCu15-3
14	329; S31260; S32900	1.4460	X3CrNiMo27-5-2; X 4 CrNiMo 27 5 2		Z 3 CND 25-07 Az; Z 5 CND 27-05 Az	2324			SUS 329 J 1; SUS 329 J 1 FB; SUS 329 J 1 TB; SUS 329 J 1 TP	10Ch26N5M	X3CrNiMo27-5-2
14	321; \$32100	1.4541	X6CrNITi18-10	321 S 31; LW 18; LW 24; LWCF 18; LWCF 24; 321 S 12; 321 S 50; 321 S 51; 321 S 50-490; 1010; 1115	Z 6 CNT 18-10	2337	X 6 CrNiTi 18 11; X 6 CrNiTi 18 11 KG; X 6 CrNiTi 18 11 KW; X 6 CrNiTi 18 11 KT	F.332; F.3523; X 6 CrNiTi 18 10	SUS 321	06Ch18N10T; 08Ch18N10T; 09Ch18N10T; 12Ch18N10T	X6CrNITi18-10

Group No.											* * * * * * * * * *
Gro	USA	G	ermany	U.K.	France	Sweden	Italy	Spain	Japan	Russia	EURONORM
Material	AISI/SAE/ UNS/ ASTM/AA	Werkstoff	DIN	BS	AFNOR	SS	UNI	UNE	JIS	GOST	EN
14		1.4425	X2CrNiMo18-13-3	50	AINOIT	00		UNL	010		
14	316; 316H; 316 H; S31600; S31609	1.4401	X5CrNiiMo17-12-2; X 5 CrNiiMo 18 10	316 S 33; 316 S 17;	Z 6 CND 17-11; Z 6 CND 17-11- 02-FF; Z 7 CND 17-11- 02; Z 7 CND 17-12-02	2347	X 5 CrNiMo 17 12; X 5 CrNiMo 17 12 KG; X 5 CrNiMo 17 12 KW	F.310.A; F.3534; X 5 CrNiMo 17 12 2	SUS 316; SUS 316 A; SUS 316 FB; SUS 316 HFB; SUS 316 HTB; SUS 316 HTP; SUS 316 TB; SUS 316 TB; SUS 316 TBS	08Ch16N11M3	X5CrNiMo17-12-2
14		1.4821	X20CrNiSi25-4		Z20CNS25.04						X20CrNiSi25-4
14	J92701	1.4312	GX10CrNi18-8	ANC 3 grade A; ANC 3 A; 302 C 25	Z 10 CN 18.9 M				SCS 12; SCS 13A	10Ch18N9L	
14	J92605; J93005	1.4823	GX40CrNiSi27-4; G-X 40 CrNiSi 27 4						SCH 11 X		GX40CrNiSi27-4
14		1.4585	GX7CrNiMoCuNb18-18; G-X 7 CrNiMoCuNb 18 18				X 6 CrNiMoTi 17 12				
14	347; J92640; J82710	1.4552	GX5CrNiNb19-11; G-X 5 CrNiNb 18 9	347 C 17; 821 grade Nb	Z 4 CNNb 19.10 M; Z 6 CNNb 18.10 M			AM-X 7 CrNiNb 20 10; F.8413	SCS 21; SCS 21 X		GX5CrNiNb19-11
14		1.4500	GX7NiCrMoCuNb25-20; G-X 7 NiCrMoCuNb 25-20		23 NCDU 25.20 M						
14	304; S30400	1.4301	X5CrNi18-10; X 5 CrNi 18 9	304 S 15; 304 S 31; LW 13; LW 15; LW 21; LWCF 13; 302 S 17; 304 S 16; 304 S 17; 304 S 40	Z 4 CN 19-10 FF; Z 5 CN 17-08; Z 6 CN 18-09; Z 7 CN 18-09	2333; 2332	X 5 CrNi 18 10; X 5 CrNi 18 10 KG; X 5 CrNi 18 10 KW; X 5 CrNi 18 10 KT	F.3504; X 5 CrNi 18 10	SUS 304; SUS 304 A; SUS 304-CSP; SUS 304 FB; SUS 304 TB; SUS 304 TBS; SUS 304 TKA; SUS 304 TKC	08Ch18N10	X5CrNi18-10
14	304L; 304 L; \$30403; J92500; J92600	1.4306; 1.4309	X2CrNi19-11; GXCrNi19-11	304 S 11; LW 20; LWCF 20; S.536; T.74; 304 C 12; 305 S 11	Z 1 CN 18-12; Z 2 CN 18-10; Z 3 CN 19.10 M; Z 3 CN 18-10; Z 3 CN 18-10; Z 3 CN 19-11; Z 3 CN 19-11 FF	2352	X 3 CrNi 18 11; X 2 CrNi 18 11; GX 2 CrNi 19 10	F.310.G; F.3503; X 2 CrNi 19 10; AM-X 2 CrNi 19 10; F.8412	SCS19	03Ch18N11	X2CrNi19-11; GXCrNi19-11
14	304H; 304 H; CF-8; J92590; J92600; J92650; J92710	1.4308	GX5CrNi19-10; G-X 6 CrNi 18 9	304 C 15	Z 6 CN 18.10 M; Z 6 CN 19.9 M			AM-X 7 CrNi 20 10; F.8411	SCS 13; SCS 13 A; SCS 13 X	07Ch18N9L	GX5CrNi19-10; 58E
14	J92701	1.4312	GX10CrNi18-8; G-X 10 CrNi 18 8	ANC 3 grade A; ANC 3 A; 3025 S 25	Z 10 CND 18.9 M				SCS 12	10Ch18N9L	GX10CrNi18-8
14	S32304	1.4362	X2CrNiN23-4; X 2 CrNiN 23 4		Z 3 CN 23-04 Az	2327					X2CrNiN23-4
14	201; \$20100	1.4372	X12CrMnNiN17-7-5		Z 12 CMN 17-07 Az				SUS 201		X12CrMnNiN 17-7-5
14	316; S31600	1.4436	X3CrNiiMo17-13-3; X 5 CrNiiMo 17 13 3	316 S 31; 316 S 33; LW 23; LWCF 23; 316 S 19; 316 S 40; 316 S 41; 1.4436	Z 6 CND 18-12- 03; Z6 CND 18-13; Z 7 CND 18-12-03	2343	X 5 CrNiMo 17 13; X 8 CrNiMo 17 13	F.3538; X 5 CrNiMo 17 13 3	SUS 316; SUS 316 A; SUS 316 FB; SUS 316 TB; SUS 316 TBS; SUS 316 TKA; SUS 316 TKC; SUS 316 TP		X3CrNiMo17-13-3

oup No.								i			**** **** ****
Gre	USA	G	ermany	U.K.	France	Sweden	Italy	Spain	Japan	Russia	EURONORM
Material Group No.	AISI/SAE/ UNS/ ASTM/AA	Werkstoff	DIN	BS	AFNOR	SS	UNI	UNE	JIS	GOST	EN
14	316L; 316 L; S31603; J92700; J92800	1.4404	X2CrNilMo17-12-2; X2CrNilMo17-13-2; X 2 CrNilMo 17 12 2; X 2 CrNilMo 17 13 2	316 S 13; 316 S 14; 316 S 30;	Z 2 CND 17-12; Z 3 CND 17-11- 02; Z 3 CND 17-12- 02; Z 3 CND 17-12- 02 FF; Z 3 CND 18-12-03	2348	X 2 CrNiMo 17 12	F.310.K; F.3533; F.3537	SUS 316 L; SUS 316 LFB; SUS 316 LTBS; SUS 316 LTP; SUS 316 F 316 L		X2CrNiMo17-13-2
14	316LN; 316 LN; S31653	1.4406	X2CrNiMoN17-11-2; X2CrNiMoN17-12-2; X 2 CrNiMoN 17 12 2	316 S 61; 316 S 63	Z 2 CND 17-11 Az		X 2 CrNiMoN 17 12	F.3542; X 2 CrNiMoN 17 12 2	SUS 316 LN; SUS F 316 LN		X2CrNiMoN 17-11-2
14	CF-8M; J92900	1.4408	GX5CrNiMo 19-11-2; G-X 6 CrNiMo 18 10	ANC 4 grade B; ANC 4 B; 316 C 16; 845 grade B				AM-X 7 CrNiMo 20 10; F.8414	SCS 14; SCS 14 A; SCS 14 X	07Ch18N10G2S2M2L	GX5CrNiMo 19-11-2
14	S32750	1.4410	X2CrNiMoN25-7-4; X 10 CrNiMo 18 9		Z 5 CND 25-06 Az	2328					X2CrNiMoN 25-7-4
14	316LN; 316 LN; S31563	1.4429	X2CrNiMoN17-13-3; X 2 CrNiMoN 17 13 3	316 S 63; 1.4429	Z 3 CND 17-12 Az	2375	X 2 CrNiMoN 17 13	F.3543; X 2 CrNiMoN 17 13 3	SUS 316 LN; SUS F 316 LN		X2CrNiMoN 17-13-3
14	316L; 316 L; S31603; J92800	1.4435	X2CrNiMo18-4-3; X 2 CrNiMo18 14 3	316 S 13; 316 S 11; 316 S 14; 316 S 31; LW 22; LWCF 22; 845 B	Z 3 CND 17-12- 03; Z 3 CND 18-14-03	2353	X 2 CrNiMoN 17 13; X 2 CrNiMoN 17 13 KG; X 2 CrNiMoN 17 13 KW	F.3533-X2 CrNiMo 17 13 2	SUS 316 L; SUS 316 LFB; SUS 316 LTBS; SUS 316 LTP; SUS F 316 L	O3Ch17N14M3	X2CrNiMo18-4-3
14	S31726	1.4439	X2CrNiMoN17-13-5; X 2 CrNiMoN 17 13 5		Z 3 CND 18-14- 05 Az			F.3544; X 2 CrNiMoN 17 13 5			X2CrNiMoN 17-13-5
14	317; S31700	1.4449	X3CrNiMo18-12-3	317 S 16			X 5 CrNiMo 18 15		SUS 317; SUS 317 TB; SUS 317 TP; SUS F 317		X3CrNiMo18-12-3
14	329; S31260; S32900	1.4460	X3CrNiMoN27-5-2; X 4 CrNiMoN 27 5 2		Z 5 CND 27-05 Az; Z 3 CND 25-07 Az	2324		F.3552; F.3309; X 8 CrNiMo 27-05; X 8 CrNiMo 26 6	SUS 329 J 1; SUS 329 J 1 FB SUS 329 J 1 TB SUS 329 J 1 TP	10Ch26N5M	X3CrNiMoN27-5-2
14	S31803; S31260; S32900	1.4462	X2CrNiMoN22-5-3; X 2 CrNiMoN 22 5 3	318 S 13; 1.4462	Z 2 CND 24-08 Az; Z 3 CND 25-06- 03 Az; Z 3 CND 25 -05 Az	2377			SUS 329 J 3 L; SUS 329 J 3 LTB; SUS 329 J 3 LTF	>	X2CrNiMoN22-5-3
14	631; 17-7PH; 17-7 PH; S17700	1.4568; 1.4564; 1.4504	X7CrNiAl17-7; X 7 CrNiAl 17 7	301 S 81	Z 9 CNA 17-07; Z 8 CNA 17-07	2388		X 2 CrNiMo 17 12	SUS 631; SUS 631 J 1; SUS 631-CSP	09Ch17N7Ju1	X7CrNiAl17-7
14	443; 444; S44300; S44400	1.4521	X2CrMoTi18-2; X 2 CrMoTi 18 2		Z 3 CDT 18-02; Z 3 CDT 18-2	2326		F.3123; X 2 CrMoTiNb 18 2	SUS 444; SUS 444 TB; SUS 444 TP		X2CrMoTi18-2
14	904L; 904 L; N08904	1.4539	X1NiCrMoCu25-20-5; X 1 NiCrMoCuN 25 20 5	904 S 13	Z 2 NCDU 25-20	2562					X1NiCrMoCu 25-20-5
14	630; 17-4PH; 17-4 PH; S17400	1.4542	X5CrNiCuNb16-4; X 5 CrNiChNb 17 4		Z 7 CNU 15-05; Z 7 CNU 16-04; Z 7 CNU 17-04				SUS 630; SUS 630 FB; SUS F 630		X5CrNiCuNb16-4
14	S31254	1.4547	X1CrNiMoN20-18-7			2378					X1CrNiMoN 20-18-7
14	631; 17-7PH; 17-7 PH; S17700	1.4568	X7CrNiAl17-7; X 7 CrNiAl 17 7	301 S 81	Z 9 CNA 17-07; Z 8 CNA 17-07	2388		X 2 CrNiMo 17 12	SUS 631; SUS 631 J 1; SUS 631-CSP	09Ch17N7Ju1	X7CrNiAl17-7

_				_							
Group No.								-			****
	USA	G	ermany	U.K.	France	Sweden	Italy	Spain	Japan	Russia	EURONORM
Material	AISI/SAE/ UNS/ ASTM/AA	Werkstoff	DIN	BS	AFNOR	SS	UNI	UNE	JIS	GOST	EN
14	316 Ti; S31635	1.4571	X6CrNiMoTi17-12-2; X 6 CrNiMoTi 17 12 2	320 S 31; 320 S 18	Z 6 CNDT 17-12	2350	X 6 CrNiMoTi 17 12; X 6 CrNiMoTi 17 12 KG; X 6 CrNiMoTi 17 12 KW	F.310.B; F.3535; X 6 CrNiMoTi 17 12 2	SUS 316 Ti; SUS 316 TiTB; SUS 316 TiTP	08Ch16N11M3T; 08Ch17N13M2T; 10Ch17N13M2T	X6CrNiMoTi 17-12-2
14	309S; 309 S; 309; S30908; S30900	1.4833	X12CrNi23-13; X 7 CrNi 23 14	309 S 24	Z 15 CN 23-13; Z 15 CN 24-13		X 6 CrNi 23 14		SUS 309 S; SUS 309 S TB; SUS 309 S TP		X12CrNi23-13
14	S30415	1.4891	X4CrNiSiN18-10; X 4 CrNiSiN 18 10			2372					X4CrNiSiN 18-10
14	S30815	1.4893	X9CrNiSiNCe21-11-2; X 8 CrNiSiN 21 11			2368					X9CrNiSiNCe 21-11-2
14	304H; 304 H; S30409; S30480	1.4948	X6CrNi18-10; X6CrNi18-11; X 6 CrNi 18 11;	304 S 50; 304 S 51; 801 grade A	Z 5 CN 18-09				SUS 302		X6CrNi18-10
14		1.4581	GX5CrNiMoNb19-11-2; G X 5 CrNiMoNb 18 10	ANC 4 grade C; ANC 4 C; 318 C 17; 845 grade Nb	Z 4 CNDNb 18.12 M		GX 6 CrNiMoNb 20 11		SCS 22		GX5CrNiMoNb 19-11-2
14	303; S30300	1.4305	X8CrNiS18-9; X 10 CrNiS 18 9	303 S 31	Z 8 CNF 18-09	2346	X 10 CrNiS 18 09	F.310.C; F.3508; X 10 CrNiS 18-09	SUS 303	30Ch18N11	X8CrNiS18-9; 58M
14	304L; 304 L; S30403	1.4306	X2CrNi19-11; X 2 CrNi 19 11	304 S 11; LW14; LW 20; LWCF 14; LWCF 20; S.536; T.74; 304 C 12; 304 S 11	Z 1 CN 18-12; Z 3 CN 18-10; Z 3 CN 19-11; Z 3 CN 19-11 FF	2352	X 2 CrNi 18 11; X 3 CrNi 18 11	F.310.G; F.3503; X 2 CrNi 18 10	SUS 304 L; SUS 304 LFP; SUS 304 LTB; SUS 304 LTB; SUS 304 LTP; SUS 504 L	03Ch18N11	X2CrNi19-11
14	301; J 230; S30100; S30200	1.4310	X10CrNi18-8; X 12 CrNi 17 7	301 S 21; 301 S 22	Z 11 CN 17-08; Z 11 CN 18-08; Z 12 18-09	2331	X 12 CrNi 17 07	F.3517; X 2 CrNiN 18 10	SUS 301; SUS 301-CSP; SUS 302; SUS 302 FB	12Ch18N9	X10CrNi18-8
14	304LN; 304 LN; S30453	1.4311	X2CrNiN18-10; X 2 CrNiN 18 10	304 S 61	Z 3 CN 18-10 Az; Z 3 CN 18-07 Az	2371	X 2 CrNiN 18 11	F.3541; X 2 CrNiN 18 10	SUS 304 LN; SUS F 304 LN		X2CrNiN18-10
14	304B1; 304B2; 304B3; 304 B1; 304 B2; 304 B3; S30461; S30462; S30463	1.4350	X5CrNi18-9	304 S 31	Z 6 CN 18.09	2332; 2333	X 5 CrNi 18 10	F.3551			58E
14	317L; 317 L; S31703	1.4438	X2CrNiMo18-15-4; X2 CrNiMo 18 16 4	317 S 12	Z 2 CND 19-15- 04; Z 3 CND 19-15-04	2367	X 2 CrNiMo 18 16	F.3539; X2 CrNiMo 18 16 4	SUS 317 L; SUS 317 LFB; SUS 317 LTB; SUS 317 LTP; SUS F 317 L; SUS Y 317 L		X2CrNiMo18-15-4
14	321H; 321 H; \$32109	1.4878	X12CrNITi18-10; X 12 CrNiTi 18-9	321 S 31	Z 6 CNT 18-10	2337	X 6 CrNiTi 18.11	F.3553	SUS 321; SUS 321 HFB; SUS 321 HTB; SUS 321 HTP; SUS 321 TKA; SUS 321 TP; SUS F 321; SUS Y 321		X12CrNiTi18-10; 58B

Group No.								i			**** **** ****
Gro	USA	G	ermany	U.K.	France	Sweden	Italy	Spain	Japan	Russia	EURONORM
Material	AISI/SAE/ UNS/ ASTM/AA	Werkstoff	DIN	BS	AFNOR	SS	UNI	UNE	JIS	GOST	EN
14	347; 348; S34700; S34800	1.4550	X6CrNiNb18-10; X 6 CrNiNb 18 10	347 S 31; ANC 3 grade B; ANC 3 B; 347 S 20; 347 S 40; 347 S 50; 347 S 51	Z 6 CNNb 18-10	2338	X 6 CrNiNb 18 11; X 6 CrNiNb 18 11 KG; X 6 CrNiNb 18 11 KW; X 6 CrNiNb 18 11 KW;	F.3524; X 6 CrNiNb 18 10	SUS 347; SUS 347 FB; SUS 347 HTB; SUS 347 TB; SUS 347 TKA; SUS 347 TP; SUS F 347	08Ch18N12B	X6CrNiNb18-10; 58F;
14	318; S31803	1.4583	X10CrNiMoNb18-12; X 10CrNiMoNb 18 12		Z 6 CNDNb 18-12		X 6 CrNiMoNb 20 11				
14	310H; 310 H; 310S; 310 S; S31008; S31009	1.4845	X8CrNi25-21; X 12 CrNi 25 21	310 S 16; 310 S 24; 310 S 25; 310 S 31	Z 8 CN 25-20; Z 12 CN 25-20; Z 12 CN 26-21	2361	X 6 CrNi 25 20 (X 6 CrNi 25 20)	F.331	SUS 310 S; SUS 310 FB; SUS 310 STG; SUS 310 STP; SUS310 TB; SYS Y 310 S	10Ch23N18; 20Ch23N18	X12CrNi25-21
14		1.4465; 1.4466	X1CrNiMoN25-22-2; X 2 CrNiMoN 25 22 7								X1CrNiMoN 25-22-2
14	309; S30900	1.4828	X15CrNiSi20-12; X 15 CrNiSi 20 12	309 S 24	Z 9 CN 24-13; Z 17 CNS 20-12		X 16 CrNi 23 14	F.3312; X 15 CrNiSi 20-12	SUH 309; SUS 309 TB; SUS 309 TP	20Ch20N14S2	58C; X15CrNiSi20-12
14	HK; J94203; J94204; J94224	1.4848	GX40CrNiSi25-20; G-X 40 CrNiSi 25 20	310 C 40; 310 C 45			G X 40 CrNi 26 20	AM-X 40 CrNi 25 20; F.8452	SCH 21; SCH 22; SCH 22 X		GX40CrNiSi25-20
14	HK 30; J93503; J94003; J94013; HH	1.4837; 1.4848+Nb	GX40CrNiSi25-12; G-X 40 CrNiSi 25 12	309 C 30			G X 35 CrNi 25 12		SCH 13; SCH 13 A; SCH 13 X; SCH 17; SCS 17	40Ch24N12SL	GX40CrNiSi25-12
14	310; 314; S3100; S31400; S31500	1.4841	X15CrNiSi25-21; X 15 CrNiSi 25 20	314 S 25	Z 15 CNS 25-20		X 16 CrNiSi 25 20	F.3310; X 15 CrNiSi 25-20	SUH 310; SUS 310 TB; SUS Y 310	20Ch25N20S2	X15CrNiSi25-21
14		1.4849	GX40NiCrSiNb38-19; G-X 40 NiCrSi 38 18								GX40NiCrSiNb 38-19
14	S32760; SA351/995; 25Cr-7Ni-Mo-N	1.4501	X2CrNiMoCuWN25-7-4	1.4501	Z 3 CNDU 25-06 Az						X2CrNiMoCuWN 25-7-4
14	348; S34800	1.4546	X5CrNiNb18-10	2 S.130; 2 S.143; 3 S.144; 3 S.145; S.525; S.527							
14		1.4544; 1.4544.9		S.524; S.526; 2 S 129	Z 10 CNT 18-11; 9160/C 63; 9160C201		X 6 CrNiTi 18 11			08Ch18N12T	FE-PA 13
14		1.6900	X12CrNi18-9; X 12 CrNi 18 9								
14		1.4829	X12CrNi22-12; X 12 CrNi 22 12								
14		1.4882	X50CrMnNiNbN21-9		Z 50 CMNNb 21.09						X50CrMnNiNbN 21-9
14	316N; 316 N; J92804	1.4409	GX2CrNiMo19-11-2; G-X 2 CrNiMo 19 11 2		Z 3 CND 19.10 M		GX2 CrNiMo 19 11	AM-X 2 CrNiMo 19 11; F.8415	SCS 16 A; SCS 16 AX SCS 16 AXN		GX2CrNiMo 19-11-2
14	304L; 304 L J92500; J92620	1.4309	GX2CrNi19-11	304 C 12	Z 3 CN 19.10 M		GX 2 CrNi 19 10	AM-X 2 CrNi 19 10; F.8412	SCS 19; SCS 19 A		GX2CrNi19-11
15	No 25 B	0.6015	EN-GJL-150; GG 15; EN-JL 1020	Grade 150	Ft 15 D; R 15 D	01 15-00	G 14; G 15	FG 15	FC 15; FC 150	SCh 15	EN-GJL-150; EN-JL 1020
15	A48-30 B; Class 30, No.30 B	0.6020	EN-GJL-200; GG 20; EN-JL 1030	Grade 220	Ft 20 D	01 20-00	G 20; Gh 190	FG 20	FC 20; FC 200	SCh 20	EN-GJL-200; EN-JL 1030

_											
Group No.								i			**** **** ****
Gre	USA	G	ermany	U.K.	France	Sweden	Italy	Spain	Japan	Russia	EURONORM
<u>Material</u>	AISI/SAE/										
Mat	UNS/ ASTM/AA	Werkstoff	DIN	BS	AFNOR	SS	UNI	UNE	JIS	GOST	EN
15	A48-20 B; Class 20; No 20 B	0.6010	EN-GJL-100; GG 10; EN-JL 1010		Ft 10 D	01 10-00	G 10	FG 10	FC 10; FC 100	SCh10	EN-GJL-100; EN-JL 1010
16	A48-45 B; Class 45; No 45 B	0.6030	EN-GJL-300; GG 30; EN-JL 1050	Grade 300	Ft 30 D	01 30-00	G 30	FG 30	FC 30; FC 300	SCh 30	EN-GJL-300; EN-JL 1050
16	A48-50 B; Class 50; No 50 B	0.6035	EN-GJL-350; GG 35; EN-JL 1060	Grade 350	Ft 35 D	01 35-00	G 35	FG 35	FC 35; FC350	SCh 35	EN-GJL-350; GG 35; EN-JL 1060
16	A48-60 B; Class 60; No 60 B	0.6040	EN-JLZ; GG 40	Grade 400	Ft 40 D	01 40-00				SCh 40	EN-JLZ
16	A48-40 B; Class 40; No 40 B	0.6025	EN-GJL-250; GG 25; EN-JL 140	Grade260	Ft 25 D	01 25-00	G 25	FG 25	FC 25	SCh 25	EN-GJL-250; EN-JL 140
17		0.7033	EN-GJS-350-22-LT; GGG 35.3	350/22 L 40	FGS 370-/17	0717-15	GS 370-17	FNG 38-17	FCD 350-22L	VCh42-12	EN-GJS-350-22-LT
17	60-40-18; A536 60-40-18	0.7043	EN-GJS-400-18; EN-GJS-400-18-LT; GGG-40.3; EN-GJS-400-18A-LT	370/7; SNG 370/17	FGS 370-17	0717-15	GSO 400-12			VCh 42-2	EN-GJS-400-18; EN-GJS-400- 18-LT; EN-GJS-400- 18A-LT
17	60-40-18; A536 60-40-18	0.7040	EN-GJS-400-15; EN-JS 1030; GGG-40	420/12; SNG 420/12	FCS 400-12	0717-02	GS 400-12	FGE 38-17	FCD 40	VCh 42-12	EN-GJS-400-15; EN-JS 1030
17	65-45-12; A536 65-45-12	5.3107	EN-GJS-450-10	450/10; SNG 450/10	FGS 450-10		GS 400-12	FGE 42-12	FCD450	VCh 45	EN-GJS-450-10
18	65-45-12; A536 65-45-12	0.7050	EN-GJS-500-7; EN-GJS-500-7A; EN-JS 1050; GGG-50	500/7	FGS 500-7	0727-02	GS 500/7	FGE 50-7	FCD 50; FCD 500; FCD 500-7	VCh 50-2	EN-GJS-500-7; EN-GJS-500-7A; EN-JS 1050
18	80-55-06; A536 80-55-06	0.7060	EN-GJS-600-3; EN-GJS-600-3A; EN-JS 1060; GGG-60	600/3	FGS 600-3	0732-03	GS 600/3	FGE 60-2	FCD 60; FCD 600; FCD 600-3		
18		0.7652	GGG-NiMn 13 7	S-NiMn 13 7	S-NM 13 7	07 32-03	GGG 60	GGG 60			
18	70-03	0.7070	EN-GJS-700-2; EN-JS 1070; GGG-70	700/2; SNG700/2	FGS 700-2	0737-01	GS 700-2	FGE 70-2	FCD 70; FCD 700; FCD 700-2	VCh 70-2	EN-GJS-700-2; EN-JS 1070
18	A439 Type D-2	0.7660	GGG-NiCr 20 2	S-NiCr 20 2	S-NC 20-2						
18	A439 Type D-2 B	0.7661	GGG-NiCr 20 3	S-NiCr 20 3	S-NC 20 3						
19	A47-32510; A47 Class 32510; A47 Grade 32510; 32510	0.8135	EN-GJMB-350-10; EN-JM 1130; GTS-35-10; GTS-35	B 340/12; 310 B340/12	MN 35-10; A32-702 MN 350-10	0810	B 35-10	GTS 35; 36114 Type A	FCMB 340; G5703 FCMB 340	KCh 35-10	EN-GJMB-350-10; EN-JM 1130
19	A47-35018, A47 Class 35018; A47 Grade 35018				MN 380-18; A32-702 MN 380-18					KCh 37-12	
19	22010; UNS F22200			B 32-10; 6681 B 32-10					FCMB 310	KCh 33-8	
20	A220-50005; A220 Class 50005; A220 Grade 50005	0.8155	EN-GJMB-550-4; EN-JM1160; GTS-55-04	P 55-04; P 510/4	MP 60-3; A32-703 MP 60-3; Mn 550-4	0856-00	P 55-04	Type C; 36116 Type C	FCMP 540	KCh 55-4; KCh60-3	EN-GJMB-550-4; EN-JM1160

No.											****
dno.											****
al G	USA AISI/SAE/	G	ermany	U.K.	France	Sweden	Italy	Spain	Japan	Russia	EURONORM
Material Group No.	UNS/ ASTM/AA	Werkstoff	DIN	BS	AFNOR	SS	UNI	UNE	JIS	GOST	EN
20	A220-70003; A220 Class 70003; A220 Grade 70003	0.8165	EN-GJMB-650-2; EN-JM1180; GTS-65-02	P 65-02; 6681 P 65-02; P 570/3	Mn 650-3	0862-030	GMN 65		FCMP 590	KCh 63-3	EN-GJMB-650-2; EN-JM1180
20	A220-70003; A220 Class 70003; A220 Grade 70003	0.8170	EN-GJMB-700-2; EN-JM1190; GTS-70-02	P 70-2; 6681 P 70-2; P 690/2	MP 70-2; A 32-703 MP 70-2; Mn 700-2	0862-03	P 70-2; GMN 70	36116 Type A	FCMP 690	KCh 70-2	EN-GJMB-700-2; EN-JM1190
20	A220-45006; A220 Class 45006; A220 Grade 45006 A220- 45008; A220 Class 45008; A220 Grade 45008	0.8145	EN-GJMD-450-6; EN-JM1140; GTS-45-06; GTS-45	P 45-06; 6681 P 45-06	MP 50-5; A32-703 MP 50-5	0854-00	P 45-06	Type E; 36116 Type E		KCh 45-7	EN-GJMD-450-6; EN-JM1140
20	A220-80002; A220 Class 80002; A220 Grade 80002			P 70-2	MN 700-2	854			FCMP 70; FCMP 700	KCh 80-1.5	
20	A220-90001; A220 Class 90001; A220 Grade 90001										
20	A220-60004; A220 Class 60004; A220 Grade 60004										
20	A220-40010; A220 Class 40010; A220 Grade 40010					0852-00					
20		0.8040	EN-GJMW-400-5; GTW-40-05	W 40-05	MB 400-5		W 40-05	36113 Type A	FCMW 370		EN-GJMW-400-5; EN-JM1030
20		0.8035	EN-GJMW-350-4; GTW-35-04	W 35-04	MB 35-7		W 35-04	36113 Type B	FCMW 330		EN-GJMW-350-4; EN-JM1010
21	AA5005; AA5006; A95005; A95006; 5005; 5005A; 5006	3.3315	AlMg1; AlMg1C	N41	A G0-6	144106	L3350		A5005	1510; AMg1	AIMg1C; 5005A
21	AA1050; A91050; 1050; 1050A	3.0255	Al99,5; Al99.5	1B	A5	14407	9001/2	L-3051		AD0	Al99.5; Al99,5; 1050A
21	AA1200; A91200 ; 1200; 1200A	3.0205	A199,0; A199.0; A199	1C	A4	144010	A199.0	L-3001	A1200	AO	Al99.0; AL99,0; 1200
22	AA2017; A92017; 2017; 2017A	3.1325; 3.1124	AlCu2,5Si(A); AlCu2.5Si(A); AlCuMg1		A-U4G			L-3120		V65	AlCu2,5Si(A); AlCu2.,5Si(A); 2017A
22		3.2315	AlMgSi1	H30	A-SGM0.7	144312	9006/4	L-3453		AD35	AlSiMgMn; 6082
22		3.4345	AlZnMgCuO,5; AlZnMgCuO.5								AlZnMgCu0.5; AlZnMgCu0,5; 7022
22		3.1655	AlCu6BiPb; AlCuBiPb	FC1	A-U5PbBi	144355	9002/5	L-3192	A2011		AlCu6BiPb; 2011

ISCAR

Group No.								HR E			
Gro	USA	G	ermany	U.K.	France	Sweden	Italy	Spain	Japan	Russia	EURONORM
Material	AISI/SAE/ UNS/										
Ň	ASTM/AA	Werkstoff	DIN	BS	AFNOR	SS	UNI	UNE	JIS	GOST	EN
22	AA7075; A97075; 7075	3.4365; 3.4364	AlZn5,5MgCu; AlZn5.5MgCu; AlZnMgCu1,5; AlZnMgCu1.5	7075; L95; L96	A-Z5GU		9007/2	L-3710	A7075	B95	AlZn5.5MgCu; AlZn5,.5MgCu; AW-7075; 7075
22	AA2024; A92024; 2024	3.1355; 3.1354	AlCuMg2	2024; 2L97	A-U4G1		9002/4; 3583	L-3140	A2024	D16	AlCu4Mg1; 2024
22		3.4335	AlZn4,5Mg1; AlZn4.5Mg1	H17	A-Z5G	144425	9007/1	L-3741			AlZn4.5Mg1; AlZn4,5Mg1; 7020
22	AA6061; A96061; 6061	3.3211; 3.3214	AlMg1SiCu	H20	A-GSUC		9006/2	L-3420	A6061	AD33	EN AW-6061; EN AW-AIMg1SiCu; AIMg1SiCu
23		3.3261	G-AIMg5Si; GK-AIMg5Si; AIMg5Si; VDS 245	LM5		144163				AL13	EN AC-51400; EN AC-AIMg5Si; G-AIMg5Si; AIMg5Si
23		3.2982	GD-AlSi12(Cu); G-AlSi12(Cu); AlSi12(Cu); VDS 231 D		A-S12U		3048				EN AC-47100; EN AC-AISi12C; G-AISi12Cu; AISi12Cu; AISi12Cu1(Fe)
23	520.0; AA 520.0; A05200				A-G10S		3056	L-2310	AC7B	A18	
23	222.0; AA 222.0; A02220			LM12			3041	L-2110			
23	518.0; AA 518.0; A05180	3.3292	G-AIMg9; GD-AIMg9; AIMg9; VDS 349								EN AC-51200; EN AC-AIMg9; G-AIMg9; AIMg9
23	203.0; AA 203.0; A02030	3.1754	G-AlCu5Ni1,5; G-AlCu5Ni1.5		AU5NKZr						
23	ER4047; A94047	3.2585	SG-AlSi12	4047A; NG2		144262					SG-AlSi12; EL-AlSi12
23	712.0; AA 712.0; A07120		G-AlZn10Si8Mg; GK-AlZn10Si8Mg; AlZn10Si8Mg; VDS 108		A-Z5GF		3602				EN AC-71100; EN AC-AIZn10Si8Mg; G-AIZn10Si8Mg; AIZn10Si8Mg
23	514.0; 514.1; AA 514.0; AA 514.1; A05140; A05141	3.3561	G-AIMg5; GK-AIMg5; AIMg5; EN AC-51300; VDS 244		A-G6		3058	L-2331		AL28; AMg5Mz;	EN AC-51300; EN AC-AIMg5; G-AIMg5; AIMg5
23	B413.0; AA B413.0; A24130; B213.0; AA 213.0; A22130	3.2581; 3,2582	G-AISi12; GK-AISi12; GD-AISi12; AISi12	LM6	A-S13	144261	4514	L-2520	AC3		EN AC-44200; EN AC-AISi12; G-AISi12; GD-AISi12; AISi12
23		3.2211	G-AlSi11; GK-AlSi11; AlSi11								EN AC-44000; EN AC-AlSi11; G-AlSi11
23	A444.0; AA A444.0; A14440									AK7	
23		3.3541	G-AIMg3; GK-AIMg3; GF-AIMg3; AIMg3; VDC 244	H20	A-G3T	144224	3059	L-2341	ADC6		EN AC-51100; EN AC-AIMg3; G-AIMg3; AIMg3

Material Group No.								iiii			
Grou	USA	G	ermany	U.K.	France	Sweden	Italy	Spain	Japan	Russia	EURONORM
rial (AISI/SAE/		ennany	0.1.	Trance	Sweden	пату	Opain	Japan	Tussia	
Mate	UNS/ ASTM/AA	Werkstoff	DIN	BS	AFNOR	SS	UNI	UNE	JIS	GOST	EN
24	515.0; AA 515.0; A05150	3.3241	G-AIMg3Si; GK-AIMg3Si; GF-AIMg3Si; AIMg3Si; AIMg3Si1								G-AIMg3Si1; AIMg3Si
24		3.2373	G-AISi9Mg; GK-AISi9Mg; AISi9Mg		A-S9G		3051		AC4A	AK9	G-AlSi9Mg; AlSi9Mg
24	A356.0; AA A356.0; A13560; A356.2; AA A356.2; A13562	3.2371	G-AISi7Mg; GK-AISi7Mg; GF-AISi7Mg; AISi7Mg	2L99	A-S7G03			L-2651	AC4CH	AL9	G-AlSi7Mg; AlSi7Mg
24	204.0; AA 204.0; A02040	3.1371	G-AlCu4TiMg; GK-AlCu4TiMg; GF-AlCu4TiMg; AlCu4TiMg		AU5GT			L-2140	AC1B		EN AC-21000; EN AC-AlCu4TiMg; G-AlCu4TiMg
24	A333.0; AA A333.0; A13330	3.2161	G-AlSi8Cu3; GK-AlSi8Cu3			144163				AL13	EN AC-AISi8Cu3; EN AC-AISi8Cu3; G-AISi8Cu3
24	380.0; AA 380.0; A03800	3.2163	G-AlSi9Cu3; GD-AlSi9Cu3; AlSi9Cu3; VDS 226	LM24	A-S9U3	144252	3610	L-2630	AC4B	AK8M3; AK8	EN AC-46200; EN AC-AISi8Cu3; G-AISi9Cu3; AISi8Cu3
24	365.0; AA 365.0; A03650		G-AlSi10MnMg								EN AC-43500; EN AC-AlSi10MnMg; G-AlSi10MnMg
24	319.0; AA 319.0; A03190	3.2151	G-AlSi6Cu4; GK-AlSi6Cu4; AlSi6Cu4; VDS 225	LM21	A-S5UZ	144230	7369/4	L-2620	AC2B	AK5M	EN AC-45000; EN AC-AlSi6Cu4; G-AlSi6Cu4; AlSi6Cu4
24		3.2383	G-AlSi10MgCu; GK-AlSi10MgCu; G-AlSi10Mg(Cu); GK-AlSi10Mg(Cu); AlSi10MgCu; AlSi10Mg(Cu)		A-S10UG						
24		3.2381; 3.2385	G-AlSi10Mg; GK-AlSi10Mg; GD-AlSi10Mg; AlSi10Mg; VDS 239		A-S10G	144253					EN AC-43000; EN AC-AISi10Mg; G-AISi10Mg; AISi10Mg
24		3.1841	G-AlCu4Ti; AlCu4Ti							AL19	EN AC-21100; EN AC-AlCu4Ti; G-AlCu4Ti; AlCu4Ti
25	390.0; AA 390.0; A03900		G-AlSi17Cu4Mg	LM30		4282					EN AB-48100; EN AC-48100; G-AISi17Cu4Mg; AISi17Cu4Mg
25	393.0; AA 393.0; A03930		G-AlSi20CuMgNi; AlSi20CuMgNi	LM29						AK21M2N2	
25			G-AlSi18Cu1MgNi; AlSi18Cu1MgNi	LM28							
26	C36000	2.0375	CuZn36Pb3	CZ124	CuZn36Pb3		12167		C3600; C3601; C3602		CuZn36Pb3; CW603N
26	C83810	2.1098	CuSn3Zn8Pb5-C; G-CuSn2ZnPb	LG1							CuSn3Zn8Pb5-C
26	C83600	2.1096; 2.1096.01	CuSn5Zn5Pb5-C; G-CuSn5ZnPb; Rg 5	LG2	CuPb5Sn5Zn5; UE5; U-E 5 Pb 5 Z 5	5204-15			H5111; H2203	BrO5Ts5S5	CuSn5Zn5Pb5-C

Group No.								1			
	USA	G	ermany	U.K.	France	Sweden	Italy	Spain	Japan	Russia	EURONORM
Material	AISI/SAE/ UNS/ ASTM/AA	Werkstoff	DIN	BS	AFNOR	SS	UNI	UNE	JIS	GOST	EN
26	C93200	2.1090	CuSn7Zn4Pb7-C; G-CuSn7ZnPb; GC-CuSn7ZnPb; GZ-CuSn7ZnPb; Rg 7	GC 493K	CuSn7Pb6Zn4; UE7; U-E 7 Z 5 Pb 4						CuSn7Zn4Pb7-C
26	C93800	2.1182	CuSn7Pb15-C; G-CuPb15Sn; GC-CuPb15Sn; GZ-CuPb15Sn	LB1	U-Pb15E8; U-Pb 15 E8			C-3300			CuSn7Pb15-C; CC496K
26	C93700	2.1176	CuSn10Pb10-C; G-CuPb10Sn; GC-CuPb10Sn; GZ-CuPb10Sn	LB2	U-Pb10						CuSn10Pb10-C
27	C22000	2.0230	CuZn10; Ms90	CZ101	U-Z10; CuZn10		P-CuZn10; P-OT90		C2200	L90	CuZn10; CW501L
27	C86200; SAE 430A	2.0596	CuZn34Mn3Al2Fe1-C; G-CuZn34Al2; GK-CuZn34Al2; GZ-CuZn34Al2	HTB 1	U-Z36N3; CuZn19Al6Y20				HBSC4; H5102/class 3; H5102/class 4	LTs23A; LTs23A6Zh3MTs2	CuZn34Mn3Al2 Fe1-C; CC764S
27	C27200	2.0335	CuZn36; Ms64	CZ108	U-Z36; CuZn 36		C 2700			L63	CuZn36; CW507L
27	C27400	2.0321	CuZn37; Ms63	CZ108			P-CuZn37; P-OT63		C2720	L63	CuZn37; CW508L
27	C86400	2.0592	CuZn35Mn2Al1Fe1-C; G-CuZn35Al1; GK-CuZn35Al1; GZ-CuZn35Al1; G-Ms60	HTB 1					HBSC1; CAC301		CuZn35Mn2Al1 Fe1-C; CC765S
27	C46400	2.0530	CuZn38Sn1As; CuZn38Sn1	CZ112			P-CuZn39Sn1		C4640	LO60-1	CuZn38Sn1As; CW717R
27	C23000; 85Cu-15Zn	2.0240	CuZn15 ; CuZn 15	CZ102	U-Z15; CuZn15	5112-02; 5112-04; 5112-05			C2300		CuZn15; CW502L
27	C24000; 80Cu-20Zn	2.0250	CuZn20; CuZn 20; Ms80	CZ103	CuZn20	5114-02; 5114-04; 5114-05			C2400		CuZn20; CW503L
27	C26000; CA260	2.0265	CuZn30; CuZn 30	CZ106	CuZn30				C2600		CuZn30; CW505L
28	C63000	2.0966	CuAl10Ni5Fe4; CuAl 10 Ni 5 Fe 4	CA 104	U-A10N; CuAl9Ni5Fe3		P-CuAl10Ni5Fe5		C6301	BrAD; BrAZhN10-4-4; N10-4-4	CuAl10Ni5Fe4; CW307G
28	C90700	2.1050	CuSn10-C; G-CuSn 10; SnBz10	CT1	CuSn8						CuSn10-C; CC480K
28	C90800; C91700	2.1052; 2.1052.01; 2.1052.04; 2.1052.03	CuSn12-C; G-CuSn12; GZ-CuSn12; SnBz12, Gbz12	PB2	UE12P				CAC502C; PBC2C		CuSn12-C; CC483K
28	C95800; C95810	2.0975	G-CuAl10Fe5Ni5-C; G-CuAl 10 Ni; NiAlBz-F60		CuAl10Fe5Ni5 Y70				CAC703C		CC333G
28	C11000	2.0060	Cu-ETP; E-Cu57; E Cu 57	C101	Cu-B		Cu-DHP	C11020	C1100	M1	Cu-ETP; E-Cu57; CW004A
28	C81500	2.1292	G-CuCrF 35	CC1-FF	U-Cr0.8Zr						0,1105
28	C10300	2.0070	Cu-HCP; Cu-PHC; SE-Cu						C103	LS60-2	Cu-HCP; CW020A; Cu-PHC; CW021A
28	C10100; C10200	2.0040	Cu-OF; OF-Cu	C103; C110	Ci-c1; Cu-c2			C-1120	C1011; C1020	M0b	Cu-OF; CW008A
28	C86550	2.0590	G-CuZn40Fe; G-SoMsF30								G-CuZn40Fe
28	C18100; C18150	2.1293	CuCr1Zr; CuCrZr	CC102	U-C1Z; U-Cr0.8Zr						CuCr1Zr; CW106C

No.											***
l dno.	\mathbb{D}							1001			****
al Gr	USA	G	ermany	U.K.	France	Sweden	Italy	Spain	Japan	Russia	EURONORM
Material Group No.	AISI/SAE/ UNS/ ASTM/AA	Werkstoff	DIN	BS	AFNOR	SS	UNI	UNE	JIS	GOST	EN
28	C11000; C12200	2.0090	Cu-DHP; E-Cu58; E Cu 58 SF-Cu	C106	Cu-B				C1100; C1220	M1f	Cu-DHP; E-Cu58; CW024A
28	C95500	2.0971	CuAl9Ni3Fe2		UA9					BrA10Zh4N4L	
28	C61000	2.0920	CuAl8; Cu Al 8		CuAl8					BrA7	CuAl8
29											
29 30											
30											
31	330; N08330	1.4864	X12NiCrSi35-16; X12NiCrSi36-16; X12 NiCrSi 36 16	NA 17; INCOLOY alloy DS	Z 20 NCS 33-16; Z 12 NCS 37-18; Z 12 NCS 35-16			F.3313	SUH 330		
31	N08002; N08004; N08005; N08030	1.4865	GX40NiCrSi38-19 GX40NiCrSi38-18; G-X40 NiCrSi38 18	330 C 11; 330 C 40; 331 C 40			GX 50 NiCr 39 19		SCH 15; SCH 16		GX40NiCrSi38-18
31		1.4558	X2NiCrAITi32-20; X2 NiCrAITi 32 20	NA 15					NCF 800		X2NiCrAITi32-20
31	N08031	1.4562	X1NiCrMoCu32-28-7; X1 NiCrMoCu 32 28 7								X1NiCrMoCu 32-28-7
31		1.4958	X5NiCrAlTi31-20; X5 NiCrAlTi 31 20	NA 15					NCF 800 H; NCF 718		X5NiCrAlTi31-20
31	N08811	1.4959	X8NiCrAITi32-21; X8 NiCrAITi 32 21	NA 15; NA 15 H	Z 8 NC 33-21; Z 10 NC 32-21						X8NiCrAITi32-21
31	N08028	1.4563	X1NiCrMoCu31-27-4; X1 NiCrMoCu 31 27 4		Z 2 NCDU 31-27; Z 1 NCDU 31-27-03	2584				EK77; ChN30MDB	X1NiCrMoCu 31-27-4
31	B 163; N08800; N08810; N08332; N08811	1.4876	X10NiCrAITi32-21; X10NiCrAITi32-20; X10 NiCrAITi 32 20	NA 15; NA 15 H	Z 10 NC 32-21; Z 8 NC 33-21			F.3314; F.3545	NCF 800; NCF 800 TB; NCF 800 TP		X10NiCrAITi32-21
32	S590; J 467	1.4977	X40CoCrNi20-20; X40 CoCrNi 20 20		Z 42 CNKDWNb						
32	660; S66286	1.4980	X6NiCrTiMoVB25-15-2; X5NiCrTi26-15 X6 NiCrTiMoVB 25 15 2; X5 NiCrTi 26 15	HR 51; HR 52	Z 3 NCT 25; Z 6 NCTDV 25.15 B						X6NiCrTiMoVB 25-15-2; X5NiCrTi26-15
32		1.4943; 1.4944	X4NiCrTi25-15; X5NiCrTi26-15	HR 51	Z 6 NCTDV 25-15 B	2570					X4NiCrTi25-15; X5NiCrTi26-15
32	661; R30155	1.4971	X12CrCoNi21-20; X12 CrCoNi 21 20								X12CrCoNi21-20
32	Haynes 556; R30556										
33	Incoloy 825; N08825;	2.4858	NiCr21Mo	NA 16	NC 21 Fe DU					ChN38VT	
33	Hastelloy C-4; N06455	2.4610	NiMo16Cr16Ti								
33	Nimonic 75; N06075; AMS 5715	2.4630; 2.4951	NiCr20Ti	HR 5; HR 203-4	NC 20 T						
33	AMS 5666	2.4856	NiCr22Mo9Nb	NA 21	NC 22 FeDNb						
33	Inconel 690; N06690	2.4642	NiC29Fe		NC 30 Fe						
33	Monel 400; N04400	2.4360; 2.4361	NiCu30Fe	NA 13	NU 30						

_											
on No.											**** ****
Gro	USA	G	ermany	U.K.	France	Sweden	Italy	Spain	Japan	Russia	EURONORM
Material Group No.	AISI/SAE/ UNS/ ASTM/AA	Werkstoff	DIN	BS	AFNOR	SS	UNI	UNE	JIS	GOST	EN
33	Hastelloy X; N06002; 5390A; AMS 5754; AMS 5536	2.4603; 2.4665	NiCr30FeMo; NiCr22Fe18Mo; NiCr21Fe18Mo9	HR 6	NC 22 FeD						
33	Inconel 617; N06617; AMS 5887	2.4663a	NiCr23Co12Mo		NC 14 K 9 T 5 DWA						
33	Nimonic 90; N07090; AMS 5829	2.4632; 2.4969	NiCr20Co18Ti; NiCr 20 Co 18 Ti	HR 2; HR202; HR 402; HR 501; HR 502; HR 503	Z 8 NCDT 42						NiCr20Co18Ti
33	Haynes 214; NO7214	2.4646	NiCr16Al								
33	Rene 41; N07041; AMS 5712; AMS 5713	2.4973	NiCr19Co11MoTi; NiCr 19 CoMo		NC 19 KDT						
33	Hastelloy B2; N10665	2.4617; 2.4616; 2.4615	NiMo28; EL-NiM29; SG(UP)-NiMo27						YNiMo-7		NiMo28
33	Udimet L-605; R30605	2.4964	CoCr20W15Ni								
33	Monel R-405; N04405	2.4360; 2.4361	NiCu30Fe	NA 13	NU 30						
33	Inconel 600;	2.4816	NiCr15Fe8; NiCr 15 Fe	NA 14	NC 16 FeT					ChN78T	NiCr15Fe8
33	Inconel 601; N06601	2.4851	NiCr23Fe15A; NiCr 23 Fe		N C 23 FeA					ChN60Yu	NiCr23Fe15A
33	Nimonic 263; N07263; AMS 5872; AMS 5886	2.4650	NiCo20Cr20MoTi; NiCo 20 Cr 20 MoTi MoTi	HR 10; HR 206; HR 404	NCK 20 D						NiCo20Cr20MoTi
34	Haynes 188; Jetalloy 209; R30188; AMS 5772	2.4964	CoCr22W14Ni		KC22WN						
34	Monel K-500; N05500	2.4375	NiCu30Al3Ti; NiCu 30 Al	NA 18	NU 30 AT						NiCu30Al3Ti
34	Inconel 718; N07718; AMS 5596; AMS 5589	2.4668	NiCr19Nb5Mo3; NiCr 19 NbMo; NiCr19Fe19Nb5Mo3	HR 8	NC 19 Fe Nb						NiCr19Nb5Mo3
34		2.4955	NiFe25Cr20NbTi; NiFe 25 Cr 20 NbTi		NiFe25Cr20NbTi						NiFe25Cr20NbTi
34	Incoloy 925; N09925	2.4670									
34	Nimonic 901; N09901; AMS 5660; AMS 5661	2.4662	NiFe35Cr14MoTi; NiCr13Mo6Ti3; NiCr 13 Mo 6 Ti 3		Z8 NCDT 42						
34	Udimet 500; N07500; AISI 684	2.4983	NiCr18Co18MoAITi		NCK 19 DAT						NiCr18Co18MoAlTi
34	Nimonic 80A; N07080	2.4631; 2.4952	NiCr20TiAl; NiCr 20 TiAl	HR 401; HR 601	NC 20 TA				NCF 80 A	ChN77TYuR; ChN56VMTYu	NiCr20TiAl
34	Jetalloy 209; AMS 5772		CoCr22W14Ni		KC 22 WN						
34	Altemp S-816	2.4989	CoCr20Ni20W							Altemp S-816	
34	MAR-M 246	2.4675	NiCr23Mo16Cu; NiCr 23 Mo 16 Cu								NiCr23Mo16Cu
34	Inconel 722; N07722; AMS 5411										

ID No.								iñi			* * * * * * * *
Grou	USA	G	ermany	U.K.	France	Sweden	Italy	Spain	Japan	Russia	EURONORM
Material Group No.	AISI/SAE/ UNS/ ASTM/AA	Werkstoff	DIN	BS	AFNOR	SS	UNI	UNE	JIS	GOST	EN
34	Waspaloy; N07001; AISI 685; AMS 5704; AMS 5706; AMS 5708; AMS 5544	2.4654	NiCr20Co13Mo4Ti3AL; NiCr 19 Co 14 Mo 4 Ti		NC 20 K 14						NiCr20Co 13Mo4Ti3AL
34	Rene 80				NC14 K9 T5 DWA						
35	5388C; N30002; CW-12MW;	2.4883	G-NiM16CrW								
35	N7M; N-7M; N30007	2.4685	G-NiMo28		ND 30 M						
35	N12MV; N-12MV; N30012	2.4882; 9.4810; 2.4810/9.4810	G-NiMo30								
35	Nimocast PK24; N13100; AMS 5397	2.4674	G-NiCo15Cr10AITiMo	HC 204	NK 15 CAT						
35	Jethete M-252; N07252; AMS 5551	2.4916	G-NiCr19Co; G-NICR 19 Co								
35	Nimocast 713; N07713; AMS 5391; Inconel 713LC	2.4670	G-NiCr13Al6MoNb	HC 203	NC 13 AD						
35	M-35-1; N214135	2.4365; 2.4365/9.4365	G-NiCu40Nb						NiCuC		
36	Titanium Grade 1; R50250; ASTM GR. 1	3.7024; 3.7025	Ti 1; Ti 99.8	TA1	T-35		Ti1-Type 1	Ti-PO1	Class 2; Gr-1	VT1-00	Ti 99.8
36	Titanium Grade 2; R50400; AMS 4902; AMS 4941; AST M Gr. 2	3.7034; 3.7035; 3.7036	Ti 2; Ti 99.7	TA2; TA3; TA4; TA5	T-40		Ti1-Type 2	Ti-PO2	Class 2; Gr-2	VT1-0	Ti 99.7
36	Titanium Grade 3; R50500; ASTM Gr. 3	3.7055; 3.7056	Ti 3; Ti 99.6	DTD 5023, DTD 5273	T-50		Ti1-Type 3		Class 3; Gr-3		Ti 99.6
36	Titanium Grade 4; R50700; ASTM Gr. 4	3.7064; 3.7065; 3.7066	Ti 4; Ti 99.5	TA7; TA8; TA9	T-60		Ti1-Type 4		Class 4; Gr-4		Ti 99.5
36	Titanium Grade 7; R52400; Ti-0.15Pd	3.7235					Ti2Pd-Type 7		Class 13; Gr-13		
37	Titanium Grade 5; R56400; Ti-6Al-4V	3.7165; 3.7164	Ti6Al4V	TA10; TA11; TA12; TA13; TA 28; TA56; Ti-Al-V	TA6V; T-A 6 V; Ti-P.63		TiAl6V4-Type 5	Ti-P63	Class 6 0; Gr 6 0; SAT-64	VT6	Ti6Al4V
37	Titanium Grade 6AI-2Sn-4Zr- 2Mo; R54620; 6AI-2Sn-4Zr- 2Mo	3.7145; 3.7144	TiAl6Sn2Zr4Mo2							VT25	TiAl6Sn2Zr4Mo2
37		3.7175; 3.7174	TiAl6V6Sn2								

_			-					-			
oup No.											
Gro	USA	G	ermany	U.K.	France	Sweden	Italy	Spain	Japan	Russia	EURONORM
Material Group No.	AISI/SAE/ UNS/ ASTM/AA	Werkstoff	DIN	BS	AFNOR	SS	UNI	UNE	JIS	GOST	EN
37	Titanium Grade 9; R56320; Ti-3Al-2.5V	3.7195; 3.7194	Ti6Al2.5V				TiAl3V2.5-Type 9		Class 6 1; Gr 6 1	PT-3V	Ti6Al2.5V
37		3.7124	TiCu2	TA 21; TA22; TA23; TA24	T-U2			Ti-P11			
37		3.7185; 3.7184	Ti4Al4Mo2Sn; TiAl4Mo4Sn4Si0.5	TA45; TA46; TA47; TA48; TA49; TA50; TA57	T-A4DE			Ti-P68			
37	Titanium Grade 6; R54520; Ti-5Al-2.5Sn	3.7115.1; 3.7115	TiAl5Sn2.5; TiAl 5 Sn 22	TA14; TA17	T-A5E; Ti-P.65				SAT-525	VT5-1	TiAl5Sn2.5
37	R56410; Ti-10V-2Fe-3AI										
37	Titanium grade 23; R56401; Ti-6Al-4V-ELI		Ti6Al4V ELI	TA11			TiAl6V4ELI-Type 5.1		Class 6 1; Gr 6 1		
37										VST 5553	Ti5Al5V5Mo3Cr; Ti-5Al-5V-5Mo-3Cr
37	Ti-4Al-3Mo-1V				T-A4D3V					VT14	
37			750 14 1840 7							VT22	
38		1.2762	75CrMoNiW6-7; 75 CrMoNiW 6 7								75CrMoNiW6-7
38	W1; T72301	1.1625	C80W2; C 80 W2	BW 18				F.520.U; F.5107; C 80	SK 75; SK 85; SK 85 M; SK 5; SK 5 M; SK 6	U8-1	C80W2
38	W110; T72301	1.1545	C105U; C 105 W 1; C 105 U		C 105 E 2 U; Y1 105; C105E2U	1880	C 100 KU	F.515; F.516	SK 105; SK 3; TC 105	U10A-1; U10A-2; U11-1	C105U
38		1.6746	32NiCrMo14-5; 32 NiCrMo 14-5	832 M 31	35 NCD 14			F.1262-32 NiCrMo 12			32NiCrMo14-5
38	W210; T72302	1.2833	100V1; 100 V 1	BW 2	C 105 E 2 UV 1; Y1 105 V; 100 V 2		102 V 2 KU		SKS 43		100V1
38	6145; 6150; 6150 H; G61500; H61500	1.8159	51CrV4; 50CrV4; 50 CrV 4	735 A 50; 735 A 51; 735 H 51; 735 M 50; En 47	50CrV4RR; 50 CV 4; 51 CV 4	2230	50 CrV 4	F.143; F.143.A; 51 CrV 4; F.1430	SUP 10; SUP 10-CSP; SUP 10 M	50ChFA; 50ChGFA	51CrV4
38	P20; T51620	1.2330	35CrMo4; 35 CrMo 4	708 A 37	34 CD 4	2234	35 CrMo 4				35CrMo4
38											
38 38											
38 38											
38		1.8721	26MnCr6-3								26MnCr6-3
38											
38 38											
38		1.2083; 1.2083 ESR	X40Cr14; X 42 Cr 13		X40Cr14; Z 40 C 14	2314	X 41 Cr 13 KU	F.5263; X 40 Cr 13	SUS 420 J 2		X40Cr14
38	300M; 4340M; K44220	1.6928	41SiNiCrMoV7-6								S 155

No.											***
Material Group No.											****
I Gre	USA	G	ermany	U.K.	France	Sweden	Italy	Spain	Japan	Russia	EURONORM
teria	AISI/SAE/ UNS/										
Mai	ASTM/AA	Werkstoff	DIN	BS	AFNOR	SS	UNI	UNE	JIS	GOST	EN
38										30ChGSA	
39	A2; T30102	1.2363	X100CrMoV5; X100CrMoV5-1; X 100 CrMoV 5 1	BA 2	X 100 CrMoV 5; Z 100 CDW 5	2260	X 100 CrMoV 5 1 KU	F.536; F.5227; X 100 CrMoV 5	SKD 12		X100CrMoV5
39	D2; T30402	1.2379	X153CrMoV12; X155CrVMo12-1; X155 CrVMo 12 1	BD 2	X 160 CrMoV 12; Z 160 CDV 12	2310	X 155 CrVMo 12 1 KU	F.520.A	SKD 10; SKD 11		X153CrMoV12
39	D3; T30403	1.2080	X210Cr12; X 210 Cr 12	BD 3	X200Cr12; Z 200 C 12		X 205 Cr 12 KU	F.521; F.5212; X 210 Cr 12	SKD 1	Ch12	X210Cr12
39	L3; T61203	1.2067	102Cr6; 102 Cr 6; 100 Cr 6	BL 3; BL3	100Cr6RR; 100 C 6; 100Cr6; Y 100 C 6		102 Cr 6 KU	F.5230; 100 Cr 6	SUJ 2	Ch	102Cr6
39	M1; H41; T11301; T20841	1.3346	HS2-9-1; S 2-9-1	BM 1	HS 2-8-1; Z 85 DCWV 08-04-02-01						HS2-9-1
39	T1; T12001	1.3355	HS18-0-1; S 18-0-1	BT 1	18-0-1; HS 18-0-1; Z 80 WCV 18-04-01	2750	HS 18-0-1	F.5520; HS 18-0-1	SKH 2	R18	HS18-0-1
39	O2; T31502	1.2842	90MnCrV8; 90 MnCrV 8	BO 2; BO2	90 MnV 8; 90 MV 8		90 MoVCr 8 KU	90 MnCrV 8; F.5229			90MnCrV8
39	H13; T20813	1.2344	X40CrMoV5-1; X40 CrMoV 5 1	BH 13	X 40 CrMoV 5; Z 40 CDV 5	2242	X 40 CrMoV 5 1 1 KU	F.5318; X 40 CrMoSiV 5	SKD 61	4Ch5MF1S	X40CrMoV5-1
39 39											
39 39											
39											
39											
39	440C; S44004; S44025	1.4125	X105CrMo17; X105 CrMo 17		Z 100 CD 17 Cl; Z 100 CD 17				SUS 440 C	95Ch18; 110Ch18M-SChD	X105CrMo17
40	A 532 Ⅲ A 25% Cr	0.9650	G-X 260 Cr 27	Grade 3 D		0466-00				ChWG	
40	Ni-Hard 4	0.9630	G-X 300 CrNiSi 9 5 2								
40		0.9625	G-X 330 NiCr 4 2	Grade 2 B		0513-00					
40	A 532 III A 25% Cr	0.9655	G-X 300 CrMo 27 1	Grade 3 E						20Ch25N20S2	
40		0.9620	G-X 260 NiCr 4 2	Grade 2 A		0512-00					
41	A532 IID20%CrMo- LC	0.9645; 5.5609	G-X 260 CrMoNi 20 2 1	Grade 3C							EN-GJN- HV600(XCr23)
41	A532 IIC15%CrMo- HC	0.9635; 0.9640	G-X 300 CrMo 15 3; G-X 300 CrMoNi 15 2 1	Grade 3A; Grade 3B							EN-GJN- HV600(XCr14)

ISCAR LTD. Israel Headquarters Tel +972 (0)4 997 0311 Fax+972 (0)4 987 3741 headquarter@iscar.co.il

Argentina ISCAR TOOLS ARGENTINA SA Tel +54 114 912 2200 Fax+54 114 912 4411 admin@iscararg.com.ar

Australia ISCAR AUSTRALIA PTY. LTD Tel +61 (0) 2 8848 3500 Fax+61 (0) 2 8848 3511 iscaraus@iscar.com.au

Austria ISCAR AUSTRIA GmbH Tel +43 7252 71200-0 Fax+43 7252 71200-999 office@iscar.at

Belarus JV ALC "TWING-M" Tel/Fax: +375 17 511 82 91 Tel/Fax: +375 17 511 82 93 Tel/Fax: +375 17 511 82 95 info@twing.by www.twing.by

Belgium n.v. ISCAR Benelux s.a. Tel +32 (0) 2 464 2020 Fax+32 (0) 2 522 5121 info@iscar.be

Bosnia (Representative Office) Tel +387 32 201 100 Fax+387 32 201 101 info@iscar.ba

Brazil Iscar do Brasil Coml. Ltda. Tel +55 19 3826-7100 Fax+55 19 3826-7171 DDG 0800 701 8877 iscar@iscarbrasil.com.br

Bulgaria ISCAR BULGARIA Tel/Fax +359 431 62557 aa_iscar@infotel.bg

Canada ISCAR TOOLS INC. Tel +1 905 829 9000 Fax+1 905 829 9100 admin@iscar.ca

Chile J&A INTERNATIONAL Tel +56 2 2232 5838 amedina@jya.cl www.jya.cl

China ISCAR CHINA Tel +86 21 8024 8888 iscar@iscar.com.cn

Colombia ISCAR Andina Tel +57 310 380 9932 Tel/fax +57 1 896 65 78 iscar@iscar.com.co

Croatia ISCAR ALATI d.o.o. Tel +385 (0) 1 33 23 301 Fax+385 (0) 1 33 76 145 podrska@iscar.hr

Cyprus

WAMET (Demetriades) Ltd. Tel +357 (0) 2 336660/5498 Fax+357 (0) 2 333386 wamet@cytanet.com.cy

Czech Republic

ISCAR CR s.r.o. Tel +420 377 420 625 Fax+420 377 420 630 iscar@iscar.cz

Denmark KJ VAERKTOEJ AS/ISCAR DENMARK Tel +45 70 11 22 44 Fax+45 46 98 67 10 ki@ki.dk

Ecuador **ISCAR** Andina Tel/fax +57 1 821 93 38 iscar@iscar.com.co atencioncliente@iscar.com.co

Estonia KATOMSK AS Tel +372 6775 671 Fax+372 6720 266 aleksei@katomsk.ee

Finland ISCAR FINLAND OY Tel +358-(0)9-439 1420 Fax+358-(0)9-466 328 info@iscar.fi

France
 France

 ISCAR FRANCE SAS

 Tel +33 (0)1 30 12 92 92

 Fax+33 (0)1 30 12 95 82
 info@iscar.fr

Germany ISCAR Germany GmbH Tel +49 (0) 72 43 9908-0 gmbh@iscar.de www.iscar.de

Greece INTERNATIONAL TOOLS K.-X. GEORGOPOULOS & SIA O.E Tel +30 210 346 0133 Fax+30 210 342 5621 info@internationaltools.gr

νιΜΔ V. Mazloumian & Sons Tel +30 2310 517-117 / 544-521 Fax+30 2310 529-107 vimaco@otenet.gr http://www.vimaco.gr

Hong Kong MTC TOOLING SYSTEMS LTD Tel +85-2-23054838 Fax+85-2-27988789 yoongkamsing@hotmail.com

Hungary ISCAR HUNGARY KFT. Tel +36 28 887 700 Fax+36 28 887 710 iscar@iscar.hu

India ISCAR India Ltd. Tel +91 77009 63707 sales@iscar.in

Indonesia CV MULTI TEKNIK Tel +62-21-29206242/44/45/59 Fax+62-21-29206243 contact@multi-teknik.co.id

Ireland HARD METAL MACHINE TOOLS Tel +353 (0) 1 286 2466 Fax+353 (0) 1 286 1514 phannigan@hardmetal.ie www.hardmetal.ie

Italy ISCAR ITALIA srl Tel +39 02 93 528 1 Fax+39 02 93 528 213 marketing@iscaritalia.it

Japan ISCAR JAPAN LTD. Tel +81 6 6835 5471 Fax+81 6 6835 5472 iscar@iscar.co.jp

Latvia MECHA, UAB Tel +370 37 407 230 Fax+370 37 407 231 info@mecha.lt

Lithuania MECHA, UAB

Tel +370 37 407 230 Fax+370 37 407 231 sigitas@mecha.lt

Mexico ISCAR DE MÉXICO Tel +52 (442) 214 5505 Fax+52 (442) 214 5510 iscarmex@iscar.com.mx

Morocco 2 rue des Fauvettes Oasis 20103 Casablanca Tel +212 (0) 7 62 23 48 56 hachem@iscar ma

The Netherlands ISCAR NEDERLAND B.V. Tel +31 (0) 182 535523 Fax+31 (0) 182 572777 info@iscar nl

New Zealand ISCAR PACIFIC I TD Tel +64 (0) 9 573 1280 Fax+64 (0) 9 573 0781 iscar@iscarpac.co.nz

North Macedonia (Representative Office) Tel +389 2 309 02 52 Fax+389 2 309 02 54 info@iscar.com.mk

Norway SVEA MASKINER AS Tel +47 32277750 Fax+47 32277751 per.martin.bakken@svea.no

Peru HARTMETALL SAC Tel: (511) 6612699 otorres@hartmetallgroup.com

Philippines MESCO Tel +63 2631 1775 Fax+63 2635 0276 mesco@mesco.com.ph

Poland Poland ISCAR POLAND Sp. z o.o. Tel +48 32 735 7700 Fax+48 32 735 7701 iscar@iscar.pl

Portugal ISCAR Portugal, SA Tel +351 256 579950 Fax+351 256 586764 info@iscarportugal.pt

Romania ISCAR Tools SRL Tel +40 (0)312 286 614 Fax+40 (0)312 286 615 iscar-romania@iscar.com

Serbia ISCAR TOOLS d.o.o. Tel +381 11 314 90 38 Fax+381 11 314 91 47 info@iscartools.rs

Singapore SINO TOOLING SYSTEM Tel +65 6566 7668 Fax+65 6567 7336 sinotool@singnet.com.sg

Slovakia ISCAR SR, s.r.o. Tel +421 (0) 41 5074301 Fax+421 (0) 41 5074311 info@iscar.sk

Slovenia ISCAR SLOVENIJA d.o.o. Tel +386 1 580 92 30 Fax+386 1 562 21 84 info@iscar.si

South Africa ISCAR SOUTH AFRICA (PTY) LTD. ShareCall 08600-47227 Tel +27 11 997 2700 Fax+27 11 388 9750 iscar@iscarsa.co.za

South Korea

ISCAR KOREA Tel +82 53 760 7594 Fax+82 53 760 7500 leevj@taequtec.co.kr

Spain ISCAR IBERICA SA Tel +34 93 594 6484 Fax+34 93 582 4458 iscar@iscarib es

Sweden

ISCAR SVERIGE AB Tel +46 (0) 18 66 90 60 Fax+46 (0) 18 122 920 info@iscar.se

Switzerland ISCAR HARTMETALL AG Tel +41 (0) 52 728 0850 Fax+41 (0) 52 728 0855 office@iscar.ch

Taiwan ISCAR Taiwan Ltd. Tel +886 (0)4-24731573 Fax+886 (0)4-24731530 iscar.taiwan@msa.hinet.net

Thailand ISCAR Thailand Ltd. Tel +66 (2) 7136633-8 Fax+66 (2) 7136632

iscar@iscarthailand.com

Turkey ISCAR Kesici Takim TIC. VE. IML. LTD Tel +90 (262) 751 04 84 (Pbx) Fax+90 (262) 751 04 85 iscar@iscar.com.tr

Ukraine ISCAR UKRAINE LLC Tel +38 (050) 440 23 91 info@iscar.com.ua

United Arab Emirates ISCAR GULF TRADING LLC Tel +971 4 886 4547 www.svrs-mena.com

United Kingdom ISCAR TOOLS LTD. Tel +44 (0) 121 422 8585 Fax+44 (0) 121 423 2789 sales@iscar.co.uk

United States ISCAR USA Arlington USA Headquarters 300 Westway Place Arlington, TX 76018 Tel +1 817-258-3200 usmarketing@iscarusa.com

Charlotte Productivity Center 3020 Whitehall Park Drive Charlotte, NC 28273 Tel +1 817 258-3202 usmarketing@iscarusa.com

Venezuela FERREINDUSTRIAL ISO-DIN C.A. Tel +58 2 632 8211/633 4657 Fax+58 2 632 5277 iso-din@cantv.net

Vietnam

ISCAR VIETNAM (Representative Office) Tel +84 8 38 123 519/20 Fax+84 8 38 123 521 iscarvn@hcm.fpt.vn

www.iscar.com

Please check ISCAR's online catalog for the most current technical information regarding our products

"© 2013 Iscar Ltd. This document, as well as all information and other data contained herein and/or derived therefrom, including but not limited to, all trademarks, logos, trade-names, concepts, pictures, designs and/or devices, as well as any data from which any proprietary and/or intellectual property right may emanate ("Information"), is the sole and exclusive property of Iscar Ltd. and is protected by copyright and other applicable laws. No part of any Information may be used or otherwise disseminated for any purpose whatsoever without the express prior written consent of Iscar Ltd. Items appearing in this catalog may be improved, amended or withdrawn without prior notice."

Drilling Handbook ISCAR's Reference Guide

